

Modules | Directives | FAQ | Glossary | Sitemap

Apache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4 > Modules

Apache Module mod_rewrite

Available Languages: en |
 fr

	Description:	Provides a rule-based rewriting engine to rewrite requested
URLs on the fly
	Status:	Extension
	Module Identifier:	rewrite_module
	Source File:	mod_rewrite.c

Summary

	The mod_rewrite module uses a rule-based rewriting
 engine, based on a PCRE regular-expression parser, to rewrite requested URLs on
 the fly. By default, mod_rewrite maps a URL to a filesystem
 path. However, it can also be used to redirect one URL to another URL, or
 to invoke an internal proxy fetch.

 mod_rewrite provides a flexible and powerful way to
 manipulate URLs using an unlimited number of rules. Each rule can have an
 unlimited number of attached rule conditions, to allow you to rewrite URL
 based on server variables, environment variables, HTTP headers, or time
 stamps.

 mod_rewrite operates on the full URL path, including the
 path-info section. A rewrite rule can be invoked in
 apache2.conf or in .htaccess. The path generated
 by a rewrite rule can include a query string, or can lead to internal
 sub-processing, external request redirection, or internal proxy
 throughput.

 Further details, discussion, and examples, are provided in the
 detailed mod_rewrite documentation.

Directives

	 RewriteBase
	 RewriteCond
	 RewriteEngine
	 RewriteMap
	 RewriteOptions
	 RewriteRule

Topics

	 Logging

	Comments

Logging

 mod_rewrite offers detailed logging of its actions
 at the trace1 to trace8 log levels. The
 log level can be set specifically for mod_rewrite
 using the LogLevel directive: Up to
 level debug, no actions are logged, while trace8
 means that practically all actions are logged.

 Using a high trace log level for mod_rewrite
 will slow down your Apache HTTP Server dramatically! Use a log
 level higher than trace2 only for debugging!

 Example
LogLevel alert rewrite:trace3

 RewriteLog

 Those familiar with earlier versions of
 mod_rewrite will no doubt be looking for the
 RewriteLog and RewriteLogLevel
 directives. This functionality has been completely replaced by the
 new per-module logging configuration mentioned above.

 To get just the mod_rewrite-specific log
 messages, pipe the log file through grep:

 tail -f error_log|fgrep '[rewrite:'

RewriteBase Directive

	Description:	Sets the base URL for per-directory rewrites
	Syntax:	RewriteBase URL-path
	Default:	None
	Context:	directory, .htaccess
	Override:	FileInfo
	Status:	Extension
	Module:	mod_rewrite

 The RewriteBase directive specifies the
 URL prefix to be used for per-directory (htaccess)
 RewriteRule directives that substitute a relative
 path.

 This directive is required when you use a relative path
 in a substitution in per-directory (htaccess) context unless either
 of the following conditions are true:

 	 The original request, and the substitution, are underneath the
 DocumentRoot
 (as opposed to reachable by other means, such as
 Alias).
	 The filesystem path to the directory containing the
 RewriteRule, suffixed by the relative
 substitution is also valid as a URL path on the server
 (this is rare).

 In the example below, RewriteBase is necessary
 to avoid rewriting to http://example.com/opt/myapp-1.2.3/welcome.html
 since the resource was not relative to the document root. This
 misconfiguration would normally cause the server to look for an "opt"
 directory under the document root.

DocumentRoot /var/www/example.com
Alias /myapp /opt/myapp-1.2.3
<Directory /opt/myapp-1.2.3>
 RewriteEngine On
 RewriteBase /myapp/
 RewriteRule ^index\.html$ welcome.html
</Directory>

RewriteCond Directive

	Description:	Defines a condition under which rewriting will take place

	Syntax:	 RewriteCond
 TestString CondPattern
	Context:	server config, virtual host, directory, .htaccess
	Override:	FileInfo
	Status:	Extension
	Module:	mod_rewrite

 The RewriteCond directive defines a
 rule condition. One or more RewriteCond
 can precede a RewriteRule
 directive. The following rule is then only used if both
 the current state of the URI matches its pattern, and if these conditions are met.

 TestString is a string which can contain the
 following expanded constructs in addition to plain text:

 	
 RewriteRule backreferences: These are
 backreferences of the form $N
 (0 <= N <= 9). $1 to $9 provide access to the grouped
 parts (in parentheses) of the pattern, from the
 RewriteRule which is subject to the current
 set of RewriteCond conditions. $0 provides
 access to the whole string matched by that pattern.

	
 RewriteCond backreferences: These are
 backreferences of the form %N
 (0 <= N <= 9). %1 to %9 provide access to the grouped
 parts (again, in parentheses) of the pattern, from the last matched
 RewriteCond in the current set
 of conditions. %0 provides access to the whole string matched by
 that pattern.

	
 RewriteMap expansions: These are
 expansions of the form ${mapname:key|default}.
 See the documentation for
 RewriteMap for more details.

	
 Server-Variables: These are variables of
 the form
 %{ NAME_OF_VARIABLE
 }
 where NAME_OF_VARIABLE can be a string taken
 from the following list:

 	HTTP headers:	connection & request:	
	
 HTTP_ACCEPT

 HTTP_COOKIE

 HTTP_FORWARDED

 HTTP_HOST

 HTTP_PROXY_CONNECTION

 HTTP_REFERER

 HTTP_USER_AGENT

 	
 AUTH_TYPE

 CONN_REMOTE_ADDR

 CONTEXT_PREFIX

 CONTEXT_DOCUMENT_ROOT

 IPV6

 PATH_INFO

 QUERY_STRING

 REMOTE_ADDR

 REMOTE_HOST

 REMOTE_IDENT

 REMOTE_PORT

 REMOTE_USER

 REQUEST_METHOD

 SCRIPT_FILENAME

 	
	server internals:	date and time:	specials:
	
 DOCUMENT_ROOT

 SCRIPT_GROUP

 SCRIPT_USER

 SERVER_ADDR

 SERVER_ADMIN

 SERVER_NAME

 SERVER_PORT

 SERVER_PROTOCOL

 SERVER_SOFTWARE

 	
 TIME_YEAR

 TIME_MON

 TIME_DAY

 TIME_HOUR

 TIME_MIN

 TIME_SEC

 TIME_WDAY

 TIME

 	
 API_VERSION

 CONN_REMOTE_ADDR

 HTTPS

 IS_SUBREQ

 REMOTE_ADDR

 REQUEST_FILENAME

 REQUEST_SCHEME

 REQUEST_URI

 THE_REQUEST

 These variables all
 correspond to the similarly named HTTP
 MIME-headers, C variables of the Apache HTTP Server or
 struct tm fields of the Unix system.
 Most are documented here
 or elsewhere in the Manual or in the CGI specification.

 SERVER_NAME and SERVER_PORT depend on the values of
 UseCanonicalName and
 UseCanonicalPhysicalPort
 respectively.

 Those that are special to mod_rewrite include those below.

 	API_VERSION
	This is the version of the Apache httpd module API
 (the internal interface between server and
 module) in the current httpd build, as defined in
 include/ap_mmn.h. The module API version
 corresponds to the version of Apache httpd in use (in
 the release version of Apache httpd 1.3.14, for
 instance, it is 19990320:10), but is mainly of
 interest to module authors.
	CONN_REMOTE_ADDR
	Since 2.4.8: The peer IP address of the connection (see the
 mod_remoteip module).
	HTTPS
	Will contain the text "on" if the connection is
 using SSL/TLS, or "off" otherwise. (This variable
 can be safely used regardless of whether or not
 mod_ssl is loaded).
	IS_SUBREQ
	Will contain the text "true" if the request
 currently being processed is a sub-request,
 "false" otherwise. Sub-requests may be generated
 by modules that need to resolve additional files
 or URIs in order to complete their tasks.
	REMOTE_ADDR
	The IP address of the remote host (see the
 mod_remoteip module).
	REQUEST_FILENAME
	The full local filesystem path to the file or
 script matching the request, if this has already
 been determined by the server at the time
 REQUEST_FILENAME is referenced. Otherwise,
 such as when used in virtual host context, the same
 value as REQUEST_URI. Depending on the value of
 AcceptPathInfo, the
 server may have only used some leading components of the
 REQUEST_URI to map the request to a file.

	REQUEST_SCHEME
	Will contain the scheme of the request (usually
 "http" or "https"). This value can be influenced with
 ServerName.
	REQUEST_URI
	The path component of the requested URI,
 such as "/index.html". This notably excludes the
 query string which is available as as its own variable
 named QUERY_STRING.
	THE_REQUEST
	The full HTTP request line sent by the
 browser to the server (e.g., "GET
 /index.html HTTP/1.1"). This does not
 include any additional headers sent by the
 browser. This value has not been unescaped
 (decoded), unlike most other variables below.

 If the TestString has the special value expr,
 the CondPattern will be treated as an
 ap_expr. HTTP headers referenced in the
 expression will be added to the Vary header if the novary
 flag is not given.

 Other things you should be aware of:

 	
 The variables SCRIPT_FILENAME and REQUEST_FILENAME
 contain the same value - the value of the
 filename field of the internal
 request_rec structure of the Apache HTTP Server.
 The first name is the commonly known CGI variable name
 while the second is the appropriate counterpart of
 REQUEST_URI (which contains the value of the
 uri field of request_rec).

 If a substitution occurred and the rewriting continues,
 the value of both variables will be updated accordingly.

 If used in per-server context (i.e., before the
 request is mapped to the filesystem) SCRIPT_FILENAME and
 REQUEST_FILENAME cannot contain the full local filesystem
 path since the path is unknown at this stage of processing.
 Both variables will initially contain the value of REQUEST_URI
 in that case. In order to obtain the full local filesystem
 path of the request in per-server context, use an URL-based
 look-ahead %{LA-U:REQUEST_FILENAME} to determine
 the final value of REQUEST_FILENAME.

	
 %{ENV:variable}, where variable can be
 any environment variable, is also available.
 This is looked-up via internal
 Apache httpd structures and (if not found there) via
 getenv() from the Apache httpd server process.
	
 %{SSL:variable}, where variable is the
 name of an SSL environment
 variable, can be used whether or not
 mod_ssl is loaded, but will always expand to
 the empty string if it is not. Example:
 %{SSL:SSL_CIPHER_USEKEYSIZE} may expand to
 128.
	
 %{HTTP:header}, where header can be
 any HTTP MIME-header name, can always be used to obtain the
 value of a header sent in the HTTP request.
 Example: %{HTTP:Proxy-Connection} is
 the value of the HTTP header
 ``Proxy-Connection:''.
 If a HTTP header is used in a condition this header is added to
 the Vary header of the response in case the condition evaluates
 to true for the request. It is not added if the
 condition evaluates to false for the request. Adding the HTTP header
 to the Vary header of the response is needed for proper caching.

 It has to be kept in mind that conditions follow a short circuit
 logic in the case of the 'ornext|OR' flag
 so that certain conditions might not be evaluated at all.

	
 %{LA-U:variable}
 can be used for look-aheads which perform
 an internal (URL-based) sub-request to determine the final
 value of variable. This can be used to access
 variable for rewriting which is not available at the current
 stage, but will be set in a later phase.
 For instance, to rewrite according to the
 REMOTE_USER variable from within the
 per-server context (apache2.conf file) you must
 use %{LA-U:REMOTE_USER} - this
 variable is set by the authorization phases, which come
 after the URL translation phase (during which mod_rewrite
 operates).

 On the other hand, because mod_rewrite implements
 its per-directory context (.htaccess file) via
 the Fixup phase of the API and because the authorization
 phases come before this phase, you just can use
 %{REMOTE_USER} in that context.

	
 %{LA-F:variable} can be used to perform an internal
 (filename-based) sub-request, to determine the final value
 of variable. Most of the time, this is the same as
 LA-U above.

 CondPattern is the condition pattern,
 a regular expression which is applied to the
 current instance of the TestString.
 TestString is first evaluated, before being matched against
 CondPattern.

 CondPattern is usually a
 perl compatible regular expression, but there is
 additional syntax available to perform other useful tests against
 the Teststring:

 	You can prefix the pattern string with a
 '!' character (exclamation mark) to negate the result
 of the condition, no matter what kind of CondPattern is used.

	
 You can perform lexicographical string comparisons:

 	'<CondPattern' (lexicographically
 precedes)

 Treats the CondPattern as a plain string and
 compares it lexicographically to TestString. True if
 TestString lexicographically precedes
 CondPattern.
	'>CondPattern' (lexicographically
 follows)

 Treats the CondPattern as a plain string and
 compares it lexicographically to TestString. True if
 TestString lexicographically follows
 CondPattern.
	'=CondPattern' (lexicographically
 equal)

 Treats the CondPattern as a plain string and
 compares it lexicographically to TestString. True if
 TestString is lexicographically equal to
 CondPattern (the two strings are exactly
 equal, character for character). If CondPattern
 is "" (two quotation marks) this
 compares TestString to the empty string.
	'<=CondPattern' (lexicographically
 less than or equal to)

 Treats the CondPattern as a plain string and
 compares it lexicographically to TestString. True
 if TestString lexicographically precedes
 CondPattern, or is equal to CondPattern
 (the two strings are equal, character for character).
	'>=CondPattern' (lexicographically
 greater than or equal to)

 Treats the CondPattern as a plain string and
 compares it lexicographically to TestString. True
 if TestString lexicographically follows
 CondPattern, or is equal to CondPattern
 (the two strings are equal, character for character).

	
 You can perform integer comparisons:
 	'-eq' (is numerically
 equal to)

 The TestString is treated as an integer, and is
 numerically compared to the CondPattern. True if
 the two are numerically equal.
	'-ge' (is numerically
 greater than or equal to)

 The TestString is treated as an integer, and is
 numerically compared to the CondPattern. True if
 the TestString is numerically greater than or equal
 to the CondPattern.
	'-gt' (is numerically
 greater than)

 The TestString is treated as an integer, and is
 numerically compared to the CondPattern. True if
 the TestString is numerically greater than
 the CondPattern.
	'-le' (is numerically
 less than or equal to)

 The TestString is treated as an integer, and is
 numerically compared to the CondPattern. True if
 the TestString is numerically less than or equal
 to the CondPattern. Avoid confusion with the
 -l by using the -L or
 -h variant.
	'-lt' (is numerically
 less than)

 The TestString is treated as an integer, and is
 numerically compared to the CondPattern. True if
 the TestString is numerically less than
 the CondPattern. Avoid confusion with the
 -l by using the -L or
 -h variant.

	You can perform various file attribute tests:
 	'-d' (is
 directory)

 Treats the TestString as a pathname and tests
 whether or not it exists, and is a directory.
	'-f' (is regular
 file)

 Treats the TestString as a pathname and tests
 whether or not it exists, and is a regular file.
	'-F' (is existing file, via
 subrequest)

 Checks whether or not TestString is a valid file,
 accessible via all the server's currently-configured
 access controls for that path. This uses an internal
 subrequest to do the check, so use it with care -
 it can impact your server's performance!
	'-H' (is symbolic link, bash convention)

 See -l.
	'-l' (is symbolic
 link)

 Treats the TestString as a pathname and tests
 whether or not it exists, and is a symbolic link. May also
 use the bash convention of -L or
 -h if there's a possibility of confusion
 such as when using the -lt or
 -le tests.
	'-L' (is symbolic link, bash convention)

 See -l.
	'-s' (is regular file, with
 size)

 Treats the TestString as a pathname and tests
 whether or not it exists, and is a regular file with size greater
 than zero.
	'-U' (is existing URL, via
 subrequest)

 Checks whether or not TestString is a valid URL,
 accessible via all the server's currently-configured
 access controls for that path. This uses an internal
 subrequest to do the check, so use it with care -
 it can impact your server's performance!

 This flag only returns information about things
 like access control, authentication, and authorization. This flag
 does not return information about the status code the
 configured handler (static file, CGI, proxy, etc.) would have
 returned.

	'-x' (has executable
 permissions)

 Treats the TestString as a pathname and tests
 whether or not it exists, and has executable permissions.
 These permissions are determined according to
 the underlying OS.

	
 If the TestString has the special value expr, the
 CondPattern will be treated as an
 ap_expr.

 In the below example, -strmatch is used to
 compare the REFERER against the site hostname,
 to block unwanted hotlinking.

 RewriteCond expr "! %{HTTP_REFERER} -strmatch '*://%{HTTP_HOST}/*'"

 RewriteRule ^/images - [F]

	You can also set special flags for
 CondPattern by appending
 [flags]
 as the third argument to the RewriteCond
 directive, where flags is a comma-separated list of any of the
 following flags:

 	'nocase|NC'
 (no case)

 This makes the test case-insensitive - differences
 between 'A-Z' and 'a-z' are ignored, both in the
 expanded TestString and the CondPattern.
 This flag is effective only for comparisons between
 TestString and CondPattern. It has no
 effect on filesystem and subrequest checks.
	
 'ornext|OR'
 (or next condition)

 Use this to combine rule conditions with a local OR
 instead of the implicit AND. Typical example:

RewriteCond %{REMOTE_HOST} ^host1 [OR]
RewriteCond %{REMOTE_HOST} ^host2 [OR]
RewriteCond %{REMOTE_HOST} ^host3
RewriteRule ...some special stuff for any of these hosts...

 Without this flag you would have to write the condition/rule
 pair three times.

	'novary|NV'
 (no vary)

 If a HTTP header is used in the condition, this flag prevents
 this header from being added to the Vary header of the response.

 Using this flag might break proper caching of the response if
 the representation of this response varies on the value of this header.
 So this flag should be only used if the meaning of the Vary header
 is well understood.

 Example:

 To rewrite the Homepage of a site according to the
 ``User-Agent:'' header of the request, you can
 use the following:

RewriteCond %{HTTP_USER_AGENT} (iPhone|Blackberry|Android)
RewriteRule ^/$ /homepage.mobile.html [L]

RewriteRule ^/$ /homepage.std.html [L]

 Explanation: If you use a browser which identifies itself
 as a mobile browser (note that the example is incomplete, as
 there are many other mobile platforms), the mobile version of
 the homepage is served. Otherwise, the standard page is served.

RewriteEngine Directive

	Description:	Enables or disables runtime rewriting engine
	Syntax:	RewriteEngine on|off
	Default:	RewriteEngine off
	Context:	server config, virtual host, directory, .htaccess
	Override:	FileInfo
	Status:	Extension
	Module:	mod_rewrite

 The RewriteEngine directive enables or
 disables the runtime rewriting engine. If it is set to
 off this module does no runtime processing at
 all. It does not even update the SCRIPT_URx
 environment variables.

 Use this directive to disable rules in a particular context,
 rather than commenting out all the RewriteRule directives.

 Note that rewrite configurations are not
 inherited by virtual hosts. This means that you need to have a
 RewriteEngine on directive for each virtual host
 in which you wish to use rewrite rules.

 RewriteMap directives of the type prg
 are not started during server initialization if they're defined in a
 context that does not have RewriteEngine set to
 on

RewriteMap Directive

	Description:	Defines a mapping function for key-lookup
	Syntax:	RewriteMap MapName MapType:MapSource

	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_rewrite

 The RewriteMap directive defines a
 Rewriting Map which can be used inside rule
 substitution strings by the mapping-functions to
 insert/substitute fields through a key lookup. The source of
 this lookup can be of various types.

 The MapName is
 the name of the map and will be used to specify a
 mapping-function for the substitution strings of a rewriting
 rule via one of the following constructs:

 ${ MapName :
 LookupKey }

 ${ MapName :
 LookupKey | DefaultValue
 }

 When such a construct occurs, the map MapName is
 consulted and the key LookupKey is looked-up. If the
 key is found, the map-function construct is substituted by
 SubstValue. If the key is not found then it is
 substituted by DefaultValue or by the empty string
 if no DefaultValue was specified. Empty values
 behave as if the key was absent, therefore it is not possible
 to distinguish between empty-valued keys and absent keys.

 For example, you might define a
 RewriteMap as:

 RewriteMap examplemap txt:/path/to/file/map.txt

 You would then be able to use this map in a
 RewriteRule as follows:

 RewriteRule ^/ex/(.*) ${examplemap:$1}

 The following combinations for MapType and
 MapSource can be used:

 	txt
	A plain text file containing space-separated key-value
 pairs, one per line. (Details ...)
	rnd
	Randomly selects an entry from a plain text file (Details ...)
	dbm
	Looks up an entry in a dbm file containing name, value
 pairs. Hash is constructed from a plain text file format using
 the httxt2dbm
 utility. (Details ...)
	int
	One of the four available internal functions provided by
 RewriteMap: toupper, tolower, escape or
 unescape. (Details ...)
	prg
	Calls an external program or script to process the
 rewriting. (Details ...)
	dbd or fastdbd
	A SQL SELECT statement to be performed to look up the
 rewrite target. (Details ...)

 Further details, and numerous examples, may be found in the RewriteMap HowTo

RewriteOptions Directive

	Description:	Sets some special options for the rewrite engine
	Syntax:	RewriteOptions Options
	Context:	server config, virtual host, directory, .htaccess
	Override:	FileInfo
	Status:	Extension
	Module:	mod_rewrite
	Compatibility:	MaxRedirects is no longer available in version 2.1 and
later

 The RewriteOptions directive sets some
 special options for the current per-server or per-directory
 configuration. The Option string can currently
 only be one of the following:

 	Inherit
	

 This forces the current configuration to inherit the
 configuration of the parent. In per-virtual-server context,
 this means that the maps, conditions and rules of the main
 server are inherited. In per-directory context this means
 that conditions and rules of the parent directory's
 .htaccess configuration or
 <Directory>
 sections are inherited. The inherited rules are virtually copied
 to the section where this directive is being used. If used in
 combination with local rules, the inherited rules are copied behind
 the local rules. The position of this directive - below or above
 of local rules - has no influence on this behavior. If local
 rules forced the rewriting to stop, the inherited rules won't
 be processed.

 Rules inherited from the parent scope are applied
 after rules specified in the child scope.

	InheritBefore
	
 Like Inherit above, but the rules from the parent scope
 are applied before rules specified in the child scope.

 Available in Apache HTTP Server 2.3.10 and later.

	InheritDown
	

 If this option is enabled, all child configurations will inherit
 the configuration of the current configuration. It is equivalent to
 specifying RewriteOptions Inherit in all child
 configurations. See the Inherit option for more details
 on how the parent-child relationships are handled.

 Available in Apache HTTP Server 2.4.8 and later.

	InheritDownBefore
	

 Like InheritDown above, but the rules from the current
 scope are applied before rules specified in any child's
 scope.

 Available in Apache HTTP Server 2.4.8 and later.

	IgnoreInherit
	

 This option forces the current and child configurations to ignore
 all rules that would be inherited from a parent specifying
 InheritDown or InheritDownBefore.

 Available in Apache HTTP Server 2.4.8 and later.

	AllowNoSlash
	
 By default, mod_rewrite will ignore URLs that map to a
 directory on disk but lack a trailing slash, in the expectation that
 the mod_dir module will issue the client with a redirect to
 the canonical URL with a trailing slash.

 When the DirectorySlash directive
 is set to off, the AllowNoSlash option can be enabled to ensure
 that rewrite rules are no longer ignored. This option makes it possible to
 apply rewrite rules within .htaccess files that match the directory without
 a trailing slash, if so desired.

 Available in Apache HTTP Server 2.4.0 and later.

	AllowAnyURI
	

 When RewriteRule
 is used in VirtualHost or server context with
 version 2.2.22 or later of httpd, mod_rewrite
 will only process the rewrite rules if the request URI is a URL-path. This avoids
 some security issues where particular rules could allow
 "surprising" pattern expansions (see CVE-2011-3368
 and CVE-2011-4317).
 To lift the restriction on matching a URL-path, the
 AllowAnyURI option can be enabled, and
 mod_rewrite will apply the rule set to any
 request URI string, regardless of whether that string matches
 the URL-path grammar required by the HTTP specification.

 Available in Apache HTTP Server 2.4.3 and later.

 Security Warning

 Enabling this option will make the server vulnerable to
 security issues if used with rewrite rules which are not
 carefully authored. It is strongly recommended
 that this option is not used. In particular, beware of input
 strings containing the '@' character which could
 change the interpretation of the transformed URI, as per the
 above CVE names.

	MergeBase
	

 With this option, the value of RewriteBase is copied from where it's explicitly defined
 into any sub-directory or sub-location that doesn't define its own
 RewriteBase. This was the
 default behavior in 2.4.0 through 2.4.3, and the flag to restore it is
 available Apache HTTP Server 2.4.4 and later.

RewriteRule Directive

	Description:	Defines rules for the rewriting engine
	Syntax:	RewriteRule
 Pattern Substitution [flags]
	Context:	server config, virtual host, directory, .htaccess
	Override:	FileInfo
	Status:	Extension
	Module:	mod_rewrite

 The RewriteRule directive is the real
 rewriting workhorse. The directive can occur more than once,
 with each instance defining a single rewrite rule. The
 order in which these rules are defined is important - this is the order
 in which they will be applied at run-time.

 Pattern is
 a perl compatible regular
 expression. On the first RewriteRule, it is matched against
 the (%-decoded) URL-path (or
 file-path, depending
 on the context) of the request. Subsequent patterns are matched against the
 output of the last matching RewriteRule.

What is matched?

 In VirtualHost context,
 The Pattern will initially be matched against the part of the
 URL after the hostname and port, and before the query string (e.g. "/app1/index.html").

 In Directory and htaccess context,
 the Pattern will initially be matched against the
 filesystem path, after removing the prefix that led the server
 to the current RewriteRule (e.g. "app1/index.html"
 or "index.html" depending on where the directives are defined).

 If you wish to match against the hostname, port, or query string, use a
 RewriteCond with the
 %{HTTP_HOST}, %{SERVER_PORT}, or
 %{QUERY_STRING} variables respectively.

Per-directory Rewrites

	The rewrite engine may be used in .htaccess files and in <Directory> sections, with some additional
complexity.
	To enable the rewrite engine in this context, you need to set
"RewriteEngine On" and
"Options FollowSymLinks" must be enabled. If your
administrator has disabled override of FollowSymLinks for
a user's directory, then you cannot use the rewrite engine. This
restriction is required for security reasons.
	When using the rewrite engine in .htaccess files the
per-directory prefix (which always is the same for a specific
directory) is automatically removed for the RewriteRule pattern matching
and automatically added after any relative (not starting with a
slash or protocol name) substitution encounters the end of a rule set.
See the RewriteBase
directive for more information regarding what prefix will be added back to
relative substitutions.
	 If you wish to match against the full URL-path in a per-directory
(htaccess) RewriteRule, use the %{REQUEST_URI} variable in
a RewriteCond.
	The removed prefix always ends with a slash, meaning the matching occurs against a string which
never has a leading slash. Therefore, a Pattern with ^/ never
matches in per-directory context.
	Although rewrite rules are syntactically permitted in <Location> and <Files> sections, this
should never be necessary and is unsupported.

 For some hints on regular
 expressions, see
 the mod_rewrite
 Introduction.

 In mod_rewrite, the NOT character
 ('!') is also available as a possible pattern
 prefix. This enables you to negate a pattern; to say, for instance:
 ``if the current URL does NOT match this
 pattern''. This can be used for exceptional cases, where
 it is easier to match the negative pattern, or as a last
 default rule.

Note

When using the NOT character to negate a pattern, you cannot include
grouped wildcard parts in that pattern. This is because, when the
pattern does NOT match (ie, the negation matches), there are no
contents for the groups. Thus, if negated patterns are used, you
cannot use $N in the substitution string!

 The Substitution of a
 rewrite rule is the string that replaces the original URL-path that
 was matched by Pattern. The Substitution may
 be a:

 	file-system path
	Designates the location on the file-system of the resource
 to be delivered to the client. Substitutions are only
 treated as a file-system path when the rule is configured in
 server (virtualhost) context and the first component of the
 path in the substitution exists in the file-system
	URL-path
	A DocumentRoot-relative path to the
 resource to be served. Note that mod_rewrite
 tries to guess whether you have specified a file-system path
 or a URL-path by checking to see if the first segment of the
 path exists at the root of the file-system. For example, if
 you specify a Substitution string of
 /www/file.html, then this will be treated as a
 URL-path unless a directory named www
 exists at the root or your file-system (or, in the case of
 using rewrites in a .htaccess file, relative to
 your document root), in which case it will
 be treated as a file-system path. If you wish other
 URL-mapping directives (such as Alias) to be applied to the
 resulting URL-path, use the [PT] flag as
 described below.
	Absolute URL
	If an absolute URL is specified,
 mod_rewrite checks to see whether the
 hostname matches the current host. If it does, the scheme and
 hostname are stripped out and the resulting path is treated as
 a URL-path. Otherwise, an external redirect is performed for
 the given URL. To force an external redirect back to the
 current host, see the [R] flag below.
	- (dash)
	A dash indicates that no substitution should be performed
 (the existing path is passed through untouched). This is used
 when a flag (see below) needs to be applied without changing
 the path.

 In addition to plain text, the Substitution string can include

 	back-references ($N) to the RewriteRule
 pattern
	back-references (%N) to the last matched
 RewriteCond pattern
	server-variables as in rule condition test-strings
 (%{VARNAME})
	mapping-function calls
 (${mapname:key|default})

 Back-references are identifiers of the form
 $N
 (N=0..9), which will be replaced
 by the contents of the Nth group of the
 matched Pattern. The server-variables are the same
 as for the TestString of a RewriteCond
 directive. The mapping-functions come from the
 RewriteMap directive and are explained there.
 These three types of variables are expanded in the order above.

 Rewrite rules are applied to the results of previous rewrite
 rules, in the order in which they are defined
 in the config file. The URL-path or file-system path (see "What is matched?", above) is completely
 replaced by the Substitution and the
 rewriting process continues until all rules have been applied,
 or it is explicitly terminated by an
 L flag,
 or other flag which implies immediate termination, such as
 END or
 F.

 Modifying the Query String

 By default, the query string is passed through unchanged. You
 can, however, create URLs in the substitution string containing
 a query string part. Simply use a question mark inside the
 substitution string to indicate that the following text should
 be re-injected into the query string. When you want to erase an
 existing query string, end the substitution string with just a
 question mark. To combine new and old query strings, use the
 [QSA] flag.

 Additionally you can set special actions to be performed by
 appending [flags]
 as the third argument to the RewriteRule
 directive. Flags is a comma-separated list, surround by square
 brackets, of any of the flags in the following table. More
 details, and examples, for each flag, are available in the Rewrite Flags document.

 	Flag and syntax	Function
	B	Escape non-alphanumeric characters before applying
 the transformation. details ...
	chain|C	Rule is chained to the following rule. If the rule fails,
 the rule(s) chained to it will be skipped. details ...
	cookie|CO=NAME:VAL	Sets a cookie in the client browser. Full syntax is:
 CO=NAME:VAL:domain[:lifetime[:path[:secure[:httponly]]]] details ...

	discardpath|DPI	Causes the PATH_INFO portion of the rewritten URI to be
 discarded. details
 ...
	END	Stop the rewriting process immediately and don't apply any
 more rules. Also prevents further execution of rewrite rules
 in per-directory and .htaccess context. (Available in 2.3.9 and later)
 details ...
	env|E=[!]VAR[:VAL]	Causes an environment variable VAR to be set (to the
 value VAL if provided). The form !VAR causes
 the environment variable VAR to be unset.
 details ...
	forbidden|F	Returns a 403 FORBIDDEN response to the client browser.
 details ...
	gone|G	Returns a 410 GONE response to the client browser. details ...
	Handler|H=Content-handler	Causes the resulting URI to be sent to the specified
 Content-handler for processing. details ...
	last|L	Stop the rewriting process immediately and don't apply any
 more rules. Especially note caveats for per-directory and
 .htaccess context (see also the END flag). details ...
	next|N	Re-run the rewriting process, starting again with the first
 rule, using the result of the ruleset so far as a starting
 point. details
 ...
	nocase|NC	Makes the pattern comparison case-insensitive.
 details ...
	noescape|NE	Prevent mod_rewrite from applying hexcode escaping of
 special characters in the result of the rewrite. details ...
	nosubreq|NS	Causes a rule to be skipped if the current request is an
 internal sub-request. details ...
	proxy|P	Force the substitution URL to be internally sent as a proxy
 request. details
 ...
	passthrough|PT	Forces the resulting URI to be passed back to the URL
 mapping engine for processing of other URI-to-filename
 translators, such as Alias or
 Redirect. details ...
	qsappend|QSA	Appends any query string from the original request URL to
 any query string created in the rewrite target.details ...
	qsdiscard|QSD	Discard any query string attached to the incoming URI.
 details
 ...
	redirect|R[=code]	Forces an external redirect, optionally with the specified
 HTTP status code. details ...

	skip|S=num	Tells the rewriting engine to skip the next num
 rules if the current rule matches. details ...
	type|T=MIME-type	Force the MIME-type of the target file
 to be the specified type. details ...

Home directory expansion

 When the substitution string begins with a string
resembling "/~user" (via explicit text or backreferences), mod_rewrite performs
home directory expansion independent of the presence or configuration
of mod_userdir.

 This expansion does not occur when the PT
flag is used on the RewriteRule
directive.

 Here are all possible substitution combinations and their
 meanings:

 Inside per-server configuration
 (apache2.conf)

 for request ``GET
 /somepath/pathinfo'':

	Given Rule	Resulting Substitution
	^/somepath(.*) otherpath$1	invalid, not supported
	^/somepath(.*) otherpath$1 [R]	invalid, not supported
	^/somepath(.*) otherpath$1 [P]	invalid, not supported
	^/somepath(.*) /otherpath$1	/otherpath/pathinfo
	^/somepath(.*) /otherpath$1 [R]	http://thishost/otherpath/pathinfo via external redirection
	^/somepath(.*) /otherpath$1 [P]	doesn't make sense, not supported
	^/somepath(.*) http://thishost/otherpath$1	/otherpath/pathinfo
	^/somepath(.*) http://thishost/otherpath$1 [R]	http://thishost/otherpath/pathinfo via external redirection
	^/somepath(.*) http://thishost/otherpath$1 [P]	doesn't make sense, not supported
	^/somepath(.*) http://otherhost/otherpath$1	http://otherhost/otherpath/pathinfo via external redirection
	^/somepath(.*) http://otherhost/otherpath$1 [R]	http://otherhost/otherpath/pathinfo via external redirection (the [R] flag is redundant)
	^/somepath(.*) http://otherhost/otherpath$1 [P]	http://otherhost/otherpath/pathinfo via internal proxy

 Inside per-directory configuration for
 /somepath

 (/physical/path/to/somepath/.htaccess, with
 RewriteBase /somepath)

 for request ``GET
 /somepath/localpath/pathinfo'':

	Given Rule	Resulting Substitution
	^localpath(.*) otherpath$1	/somepath/otherpath/pathinfo
	^localpath(.*) otherpath$1 [R]	http://thishost/somepath/otherpath/pathinfo via external
redirection
	^localpath(.*) otherpath$1 [P]	doesn't make sense, not supported
	^localpath(.*) /otherpath$1	/otherpath/pathinfo
	^localpath(.*) /otherpath$1 [R]	http://thishost/otherpath/pathinfo via external redirection
	^localpath(.*) /otherpath$1 [P]	doesn't make sense, not supported
	^localpath(.*) http://thishost/otherpath$1	/otherpath/pathinfo
	^localpath(.*) http://thishost/otherpath$1 [R]	http://thishost/otherpath/pathinfo via external redirection
	^localpath(.*) http://thishost/otherpath$1 [P]	doesn't make sense, not supported
	^localpath(.*) http://otherhost/otherpath$1	http://otherhost/otherpath/pathinfo via external redirection
	^localpath(.*) http://otherhost/otherpath$1 [R]	http://otherhost/otherpath/pathinfo via external redirection (the [R] flag is redundant)
	^localpath(.*) http://otherhost/otherpath$1 [P]	http://otherhost/otherpath/pathinfo via internal proxy

Available Languages: en |
 fr

Comments
Notice:
This is not a Q&A section. Comments placed here should be pointed towards suggestions on improving the documentation or server, and may be removed again by our moderators if they are either implemented or considered invalid/off-topic. Questions on how to manage the Apache HTTP Server should be directed at either our IRC channel, #httpd, on Freenode, or sent to our mailing lists.

Copyright 2014 The Apache Software Foundation.
Licensed under the Apache License, Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap

