

Modules | Directives | FAQ | Glossary | Sitemap

Apache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4 > Modules

Apache Module mod_negotiation

Available Languages: en |
 fr |
 ja

	Description:	Provides for content negotiation
	Status:	Base
	Module Identifier:	negotiation_module
	Source File:	mod_negotiation.c

Summary

 Content negotiation, or more accurately content selection, is
 the selection of the document that best matches the clients
 capabilities, from one of several available documents. There
 are two implementations of this.

 	A type map (a file with the handler
 type-map) which explicitly lists the files
 containing the variants.
	A Multiviews search (enabled by the Multiviews
 Options), where the server does
 an implicit filename pattern match, and choose from amongst the
 results.

Directives

	 CacheNegotiatedDocs
	 ForceLanguagePriority
	 LanguagePriority

Topics

	 Type maps
	 Multiviews

See also

	Options
	mod_mime
	Content
Negotiation
	Environment Variables

	Comments

Type maps

 A type map has a format similar to RFC822 mail headers. It
 contains document descriptions separated by blank lines, with
 lines beginning with a hash character ('#') treated as
 comments. A document description consists of several header
 records; records may be continued on multiple lines if the
 continuation lines start with spaces. The leading space will be
 deleted and the lines concatenated. A header record consists of
 a keyword name, which always ends in a colon, followed by a
 value. Whitespace is allowed between the header name and value,
 and between the tokens of value. The headers allowed are:

 	Content-Encoding:
	The encoding of the file. Apache only recognizes
 encodings that are defined by an AddEncoding directive.
 This normally includes the encodings x-compress
 for compress'd files, and x-gzip for gzip'd
 files. The x- prefix is ignored for encoding
 comparisons.
	Content-Language:
	The language(s) of the variant, as an Internet standard
 language tag (RFC 1766). An example is en,
 meaning English. If the variant contains more than one
 language, they are separated by a comma.
	Content-Length:
	The length of the file, in bytes. If this header is not
 present, then the actual length of the file is used.
	Content-Type:
	
 The MIME media type of
 the document, with optional parameters. Parameters are
 separated from the media type and from one another by a
 semi-colon, with a syntax of name=value. Common
 parameters include:

 	level
	an integer specifying the version of the media type.
 For text/html this defaults to 2, otherwise
 0.
	qs
	a floating-point number with a value in the range 0[.000]
 to 1[.000], indicating the relative 'quality' of this variant
 compared to the other available variants, independent of
 the client's capabilities. For example, a jpeg file is
 usually of higher source quality than an ascii file if it
 is attempting to represent a photograph. However, if the
 resource being represented is ascii art, then an ascii
 file would have a higher source quality than a jpeg file.
 All qs values are therefore specific to a given
 resource.

 Example

 Content-Type: image/jpeg; qs=0.8

	URI:
	uri of the file containing the variant (of the given
 media type, encoded with the given content encoding). These
 are interpreted as URLs relative to the map file; they must
 be on the same server, and they must refer to files to
 which the client would be granted access if they were to be
 requested directly.
	Body:
	The actual content of the resource may
 be included in the type-map file using the Body header. This
 header must contain a string that designates a delimiter for
 the body content. Then all following lines in the type map
 file will be considered part of the resource body until the
 delimiter string is found.

 Example:

 Body:----xyz----

 <html>

 <body>

 <p>Content of the page.</p>

 </body>

 </html>

 ----xyz----

 Consider, for example, a resource called
 document.html which is available in English, French,
 and German. The files for each of these are called
 document.html.en, document.html.fr, and
 document.html.de, respectively. The type map file will
 be called document.html.var, and will contain the
 following:

 URI: document.html

 Content-language: en

 Content-type: text/html

 URI: document.html.en

 Content-language: fr

 Content-type: text/html

 URI: document.html.fr

 Content-language: de

 Content-type: text/html

 URI: document.html.de

 All four of these files should be placed in the same directory,
 and the .var file should be associated with the
 type-map handler with an AddHandler directive:

 AddHandler type-map .var

 A request for document.html.var in this directory will
 result in choosing the variant which most closely matches the language preference
 specified in the user's Accept-Language request
 header.

 If Multiviews is enabled, and MultiviewsMatch is set to "handlers" or "any", a request to
 document.html will discover document.html.var and
 continue negotiating with the explicit type map.

 Other configuration directives, such as Alias can be used to map document.html to
 document.html.var.

Multiviews

 A Multiviews search is enabled by the Multiviews
 Options. If the server receives a
 request for /some/dir/foo and
 /some/dir/foo does not exist, then the
 server reads the directory looking for all files named
 foo.*, and effectively fakes up a type map which
 names all those files, assigning them the same media types and
 content-encodings it would have if the client had asked for one
 of them by name. It then chooses the best match to the client's
 requirements, and returns that document.

 The MultiviewsMatch
 directive configures whether Apache will consider files
 that do not have content negotiation meta-information assigned
 to them when choosing files.

CacheNegotiatedDocs Directive

	Description:	Allows content-negotiated documents to be
cached by proxy servers
	Syntax:	CacheNegotiatedDocs On|Off
	Default:	CacheNegotiatedDocs Off
	Context:	server config, virtual host
	Status:	Base
	Module:	mod_negotiation

 If set, this directive allows content-negotiated documents
 to be cached by proxy servers. This could mean that clients
 behind those proxys could retrieve versions of the documents
 that are not the best match for their abilities, but it will
 make caching more efficient.

 This directive only applies to requests which come from
 HTTP/1.0 browsers. HTTP/1.1 provides much better control over
 the caching of negotiated documents, and this directive has no
 effect in responses to HTTP/1.1 requests.

ForceLanguagePriority Directive

	Description:	Action to take if a single acceptable document is not
found
	Syntax:	ForceLanguagePriority None|Prefer|Fallback [Prefer|Fallback]
	Default:	ForceLanguagePriority Prefer
	Context:	server config, virtual host, directory, .htaccess
	Override:	FileInfo
	Status:	Base
	Module:	mod_negotiation

 The ForceLanguagePriority directive uses
 the given LanguagePriority to satisfy
 negotiation where the server could otherwise not return a single
 matching document.

 ForceLanguagePriority Prefer uses
 LanguagePriority to serve a one valid result, rather
 than returning an HTTP result 300 (MULTIPLE CHOICES) when there
 are several equally valid choices. If the directives below were
 given, and the user's Accept-Language header assigned
 en and de each as quality .500
 (equally acceptable) then the first matching variant, en,
 will be served.

 LanguagePriority en fr de
ForceLanguagePriority Prefer

 ForceLanguagePriority Fallback uses
 LanguagePriority to
 serve a valid result, rather than returning an HTTP result 406
 (NOT ACCEPTABLE). If the directives below were given, and the user's
 Accept-Language only permitted an es
 language response, but such a variant isn't found, then the first
 variant from the LanguagePriority list below will be served.

 LanguagePriority en fr de
ForceLanguagePriority Fallback

 Both options, Prefer and Fallback, may be
 specified, so either the first matching variant from LanguagePriority will be served if
 more than one variant is acceptable, or first available document will
 be served if none of the variants matched the client's acceptable list
 of languages.

See also

	AddLanguage

LanguagePriority Directive

	Description:	The precendence of language variants for cases where
the client does not express a preference
	Syntax:	LanguagePriority MIME-lang [MIME-lang]
...
	Context:	server config, virtual host, directory, .htaccess
	Override:	FileInfo
	Status:	Base
	Module:	mod_negotiation

 The LanguagePriority sets the precedence
 of language variants for the case where the client does not
 express a preference, when handling a Multiviews request. The list
 of MIME-lang are in order of decreasing preference.

 LanguagePriority en fr de

 For a request for foo.html, where
 foo.html.fr and foo.html.de both
 existed, but the browser did not express a language preference,
 then foo.html.fr would be returned.

 Note that this directive only has an effect if a 'best'
 language cannot be determined by any other means or the ForceLanguagePriority directive
 is not None. In general, the client determines the
 language preference, not the server.

See also

	AddLanguage

Available Languages: en |
 fr |
 ja

Comments
Notice:
This is not a Q&A section. Comments placed here should be pointed towards suggestions on improving the documentation or server, and may be removed again by our moderators if they are either implemented or considered invalid/off-topic. Questions on how to manage the Apache HTTP Server should be directed at either our IRC channel, #httpd, on Freenode, or sent to our mailing lists.

Copyright 2014 The Apache Software Foundation.
Licensed under the Apache License, Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap

