
Modules | Directives | FAQ | Glossary | Sitemap

Apache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4
Content Negotiation

Available Languages: en |
 fr |
 ja |
 ko |
 tr

 Apache HTTPD supports content negotiation as described in
 the HTTP/1.1 specification. It can choose the best
 representation of a resource based on the browser-supplied
 preferences for media type, languages, character set and
 encoding. It also implements a couple of features to give
 more intelligent handling of requests from browsers that send
 incomplete negotiation information.

 Content negotiation is provided by the
 mod_negotiation module, which is compiled in
 by default.

	 About Content Negotiation
	 Negotiation in httpd
	 The Negotiation Methods
	 Fiddling with Quality
 Values
	 Extensions to Transparent Content
Negotiation
	 Note on hyperlinks and naming conventions
	 Note on Caching

	Comments

About Content Negotiation

 A resource may be available in several different
 representations. For example, it might be available in
 different languages or different media types, or a combination.
 One way of selecting the most appropriate choice is to give the
 user an index page, and let them select. However it is often
 possible for the server to choose automatically. This works
 because browsers can send, as part of each request, information
 about what representations they prefer. For example, a browser
 could indicate that it would like to see information in French,
 if possible, else English will do. Browsers indicate their
 preferences by headers in the request. To request only French
 representations, the browser would send

Accept-Language: fr

 Note that this preference will only be applied when there is
 a choice of representations and they vary by language.

 As an example of a more complex request, this browser has
 been configured to accept French and English, but prefer
 French, and to accept various media types, preferring HTML over
 plain text or other text types, and preferring GIF or JPEG over
 other media types, but also allowing any other media type as a
 last resort:

 Accept-Language: fr; q=1.0, en; q=0.5

 Accept: text/html; q=1.0, text/*; q=0.8, image/gif; q=0.6, image/jpeg; q=0.6, image/*; q=0.5, */*; q=0.1

 httpd supports 'server driven' content negotiation, as
 defined in the HTTP/1.1 specification. It fully supports the
 Accept, Accept-Language,
 Accept-Charset and Accept-Encoding
 request headers. httpd also supports 'transparent'
 content negotiation, which is an experimental negotiation
 protocol defined in RFC 2295 and RFC 2296. It does not offer
 support for 'feature negotiation' as defined in these RFCs.

 A resource is a conceptual entity
 identified by a URI (RFC 2396). An HTTP server like Apache HTTP Server
 provides access to representations of the
 resource(s) within its namespace, with each representation in
 the form of a sequence of bytes with a defined media type,
 character set, encoding, etc. Each resource may be associated
 with zero, one, or more than one representation at any given
 time. If multiple representations are available, the resource
 is referred to as negotiable and each of its
 representations is termed a variant. The ways
 in which the variants for a negotiable resource vary are called
 the dimensions of negotiation.

Negotiation in httpd

 In order to negotiate a resource, the server needs to be
 given information about each of the variants. This is done in
 one of two ways:

 	Using a type map (i.e., a *.var
 file) which names the files containing the variants
 explicitly, or
	Using a 'MultiViews' search, where the server does an
 implicit filename pattern match and chooses from among the
 results.

 Using a type-map file

 A type map is a document which is associated with the handler
 named type-map (or, for backwards-compatibility with
 older httpd configurations, the MIME-type
 application/x-type-map). Note that to use this
 feature, you must have a handler set in the configuration that
 defines a file suffix as type-map; this is best done
 with

AddHandler type-map .var

 in the server configuration file.

 Type map files should have the same name as the resource
 which they are describing, followed by the extension
 .var. In the examples shown below, the resource is
 named foo, so the type map file is named
 foo.var.

 This file should have an entry for each available
 variant; these entries consist of contiguous HTTP-format header
 lines. Entries for different variants are separated by blank
 lines. Blank lines are illegal within an entry. It is
 conventional to begin a map file with an entry for the combined
 entity as a whole (although this is not required, and if
 present will be ignored). An example map file is shown below.

 URIs in this file are relative to the location of the type map
 file. Usually, these files will be located in the same directory as
 the type map file, but this is not required. You may provide
 absolute or relative URIs for any file located on the same server as
 the map file.

 URI: foo

 URI: foo.en.html

 Content-type: text/html

 Content-language: en

 URI: foo.fr.de.html

 Content-type: text/html;charset=iso-8859-2

 Content-language: fr, de

 Note also that a typemap file will take precedence over the
 filename's extension, even when Multiviews is on. If the
 variants have different source qualities, that may be indicated
 by the "qs" parameter to the media type, as in this picture
 (available as JPEG, GIF, or ASCII-art):

 URI: foo

 URI: foo.jpeg

 Content-type: image/jpeg; qs=0.8

 URI: foo.gif

 Content-type: image/gif; qs=0.5

 URI: foo.txt

 Content-type: text/plain; qs=0.01

 qs values can vary in the range 0.000 to 1.000. Note that
 any variant with a qs value of 0.000 will never be chosen.
 Variants with no 'qs' parameter value are given a qs factor of
 1.0. The qs parameter indicates the relative 'quality' of this
 variant compared to the other available variants, independent
 of the client's capabilities. For example, a JPEG file is
 usually of higher source quality than an ASCII file if it is
 attempting to represent a photograph. However, if the resource
 being represented is an original ASCII art, then an ASCII
 representation would have a higher source quality than a JPEG
 representation. A qs value is therefore specific to a given
 variant depending on the nature of the resource it
 represents.

 The full list of headers recognized is available in the mod_negotiation
 typemap documentation.

Multiviews

 MultiViews is a per-directory option, meaning it
 can be set with an Options
 directive within a <Directory>, <Location> or <Files> section in
 apache2.conf, or (if AllowOverride is properly set) in
 .htaccess files. Note that Options All
 does not set MultiViews; you have to ask for it by
 name.

 The effect of MultiViews is as follows: if the
 server receives a request for /some/dir/foo, if
 /some/dir has MultiViews enabled, and
 /some/dir/foo does not exist, then the
 server reads the directory looking for files named foo.*, and
 effectively fakes up a type map which names all those files,
 assigning them the same media types and content-encodings it
 would have if the client had asked for one of them by name. It
 then chooses the best match to the client's requirements.

 MultiViews may also apply to searches for the file
 named by the DirectoryIndex directive, if the
 server is trying to index a directory. If the configuration files
 specify

DirectoryIndex index

 then the server will arbitrate between index.html
 and index.html3 if both are present. If neither
 are present, and index.cgi is there, the server
 will run it.

 If one of the files found when reading the directory does not
 have an extension recognized by mod_mime to designate
 its Charset, Content-Type, Language, or Encoding, then the result
 depends on the setting of the MultiViewsMatch directive. This
 directive determines whether handlers, filters, and other
 extension types can participate in MultiViews negotiation.

The Negotiation Methods

 After httpd has obtained a list of the variants for a given
 resource, either from a type-map file or from the filenames in
 the directory, it invokes one of two methods to decide on the
 'best' variant to return, if any. It is not necessary to know
 any of the details of how negotiation actually takes place in
 order to use httpd's content negotiation features. However the
 rest of this document explains the methods used for those
 interested.

 There are two negotiation methods:

 	Server driven negotiation with the httpd
 algorithm is used in the normal case. The httpd
 algorithm is explained in more detail below. When this
 algorithm is used, httpd can sometimes 'fiddle' the quality
 factor of a particular dimension to achieve a better result.
 The ways httpd can fiddle quality factors is explained in
 more detail below.
	Transparent content negotiation is used
 when the browser specifically requests this through the
 mechanism defined in RFC 2295. This negotiation method gives
 the browser full control over deciding on the 'best' variant,
 the result is therefore dependent on the specific algorithms
 used by the browser. As part of the transparent negotiation
 process, the browser can ask httpd to run the 'remote
 variant selection algorithm' defined in RFC 2296.

Dimensions of Negotiation

 	Dimension	Notes
	Media Type	Browser indicates preferences with the Accept
 header field. Each item can have an associated quality factor.
 Variant description can also have a quality factor (the "qs"
 parameter).
	Language	Browser indicates preferences with the
 Accept-Language header field. Each item can have
 a quality factor. Variants can be associated with none, one or
 more than one language.
	Encoding	Browser indicates preference with the
 Accept-Encoding header field. Each item can have
 a quality factor.
	Charset	Browser indicates preference with the
 Accept-Charset header field. Each item can have a
 quality factor. Variants can indicate a charset as a parameter
 of the media type.

httpd Negotiation Algorithm

 httpd can use the following algorithm to select the 'best'
 variant (if any) to return to the browser. This algorithm is
 not further configurable. It operates as follows:

 	First, for each dimension of the negotiation, check the
 appropriate Accept* header field and assign a
 quality to each variant. If the Accept* header for
 any dimension implies that this variant is not acceptable,
 eliminate it. If no variants remain, go to step 4.
	
 Select the 'best' variant by a process of elimination. Each
 of the following tests is applied in order. Any variants
 not selected at each test are eliminated. After each test,
 if only one variant remains, select it as the best match
 and proceed to step 3. If more than one variant remains,
 move on to the next test.

 	Multiply the quality factor from the Accept
 header with the quality-of-source factor for this variants
 media type, and select the variants with the highest
 value.
	Select the variants with the highest language quality
 factor.
	Select the variants with the best language match,
 using either the order of languages in the
 Accept-Language header (if present), or else
 the order of languages in the LanguagePriority
 directive (if present).
	Select the variants with the highest 'level' media
 parameter (used to give the version of text/html media
 types).
	Select variants with the best charset media
 parameters, as given on the Accept-Charset
 header line. Charset ISO-8859-1 is acceptable unless
 explicitly excluded. Variants with a text/*
 media type but not explicitly associated with a particular
 charset are assumed to be in ISO-8859-1.
	Select those variants which have associated charset
 media parameters that are not ISO-8859-1. If
 there are no such variants, select all variants
 instead.
	Select the variants with the best encoding. If there
 are variants with an encoding that is acceptable to the
 user-agent, select only these variants. Otherwise if
 there is a mix of encoded and non-encoded variants,
 select only the unencoded variants. If either all
 variants are encoded or all variants are not encoded,
 select all variants.
	Select the variants with the smallest content
 length.
	Select the first variant of those remaining. This
 will be either the first listed in the type-map file, or
 when variants are read from the directory, the one whose
 file name comes first when sorted using ASCII code
 order.

	The algorithm has now selected one 'best' variant, so
 return it as the response. The HTTP response header
 Vary is set to indicate the dimensions of
 negotiation (browsers and caches can use this information when
 caching the resource). End.
	To get here means no variant was selected (because none
 are acceptable to the browser). Return a 406 status (meaning
 "No acceptable representation") with a response body
 consisting of an HTML document listing the available
 variants. Also set the HTTP Vary header to
 indicate the dimensions of variance.

Fiddling with Quality
 Values

 httpd sometimes changes the quality values from what would
 be expected by a strict interpretation of the httpd
 negotiation algorithm above. This is to get a better result
 from the algorithm for browsers which do not send full or
 accurate information. Some of the most popular browsers send
 Accept header information which would otherwise
 result in the selection of the wrong variant in many cases. If a
 browser sends full and correct information these fiddles will not
 be applied.

Media Types and Wildcards

 The Accept: request header indicates preferences
 for media types. It can also include 'wildcard' media types, such
 as "image/*" or "*/*" where the * matches any string. So a request
 including:

Accept: image/*, */*

 would indicate that any type starting "image/" is acceptable,
 as is any other type.
 Some browsers routinely send wildcards in addition to explicit
 types they can handle. For example:

 Accept: text/html, text/plain, image/gif, image/jpeg, */*

 The intention of this is to indicate that the explicitly listed
 types are preferred, but if a different representation is
 available, that is ok too. Using explicit quality values,
 what the browser really wants is something like:

 Accept: text/html, text/plain, image/gif, image/jpeg, */*; q=0.01

 The explicit types have no quality factor, so they default to a
 preference of 1.0 (the highest). The wildcard */* is given a
 low preference of 0.01, so other types will only be returned if
 no variant matches an explicitly listed type.

 If the Accept: header contains no q
 factors at all, httpd sets the q value of "*/*", if present, to
 0.01 to emulate the desired behavior. It also sets the q value of
 wildcards of the format "type/*" to 0.02 (so these are preferred
 over matches against "*/*". If any media type on the
 Accept: header contains a q factor, these special
 values are not applied, so requests from browsers which
 send the explicit information to start with work as expected.

Language Negotiation Exceptions

 New in httpd 2.0, some exceptions have been added to the
 negotiation algorithm to allow graceful fallback when language
 negotiation fails to find a match.

 When a client requests a page on your server, but the server
 cannot find a single page that matches the
 Accept-language sent by
 the browser, the server will return either a "No Acceptable
 Variant" or "Multiple Choices" response to the client. To avoid
 these error messages, it is possible to configure httpd to ignore
 the Accept-language in these cases and provide a
 document that does not explicitly match the client's request. The
 ForceLanguagePriority
 directive can be used to override one or both of these error
 messages and substitute the servers judgement in the form of the
 LanguagePriority
 directive.

 The server will also attempt to match language-subsets when no
 other match can be found. For example, if a client requests
 documents with the language en-GB for British
 English, the server is not normally allowed by the HTTP/1.1
 standard to match that against a document that is marked as simply
 en. (Note that it is almost surely a configuration
 error to include en-GB and not en in the
 Accept-Language header, since it is very unlikely
 that a reader understands British English, but doesn't understand
 English in general. Unfortunately, many current clients have
 default configurations that resemble this.) However, if no other
 language match is possible and the server is about to return a "No
 Acceptable Variants" error or fallback to the LanguagePriority, the server
 will ignore the subset specification and match en-GB
 against en documents. Implicitly, httpd will add
 the parent language to the client's acceptable language list with
 a very low quality value. But note that if the client requests
 "en-GB; q=0.9, fr; q=0.8", and the server has documents
 designated "en" and "fr", then the "fr" document will be returned.
 This is necessary to maintain compliance with the HTTP/1.1
 specification and to work effectively with properly configured
 clients.

 In order to support advanced techniques (such as cookies or
 special URL-paths) to determine the user's preferred language,
 since httpd 2.0.47 mod_negotiation recognizes
 the environment variable
 prefer-language. If it exists and contains an
 appropriate language tag, mod_negotiation will
 try to select a matching variant. If there's no such variant,
 the normal negotiation process applies.

 Example
SetEnvIf Cookie "language=(.+)" prefer-language=$1
Header append Vary cookie

Extensions to Transparent Content
Negotiation

httpd extends the transparent content negotiation protocol (RFC
2295) as follows. A new {encoding ..} element is used in
variant lists to label variants which are available with a specific
content-encoding only. The implementation of the RVSA/1.0 algorithm
(RFC 2296) is extended to recognize encoded variants in the list, and
to use them as candidate variants whenever their encodings are
acceptable according to the Accept-Encoding request
header. The RVSA/1.0 implementation does not round computed quality
factors to 5 decimal places before choosing the best variant.

Note on hyperlinks and naming conventions

 If you are using language negotiation you can choose between
 different naming conventions, because files can have more than
 one extension, and the order of the extensions is normally
 irrelevant (see the mod_mime documentation
 for details).

 A typical file has a MIME-type extension (e.g.,
 html), maybe an encoding extension (e.g.,
 gz), and of course a language extension
 (e.g., en) when we have different
 language variants of this file.

 Examples:

 	foo.en.html
	foo.html.en
	foo.en.html.gz

 Here some more examples of filenames together with valid and
 invalid hyperlinks:

 	Filename	Valid hyperlink	Invalid hyperlink
	foo.html.en	foo

 foo.html	-
	foo.en.html	foo	foo.html
	foo.html.en.gz	foo

 foo.html	foo.gz

 foo.html.gz
	foo.en.html.gz	foo	foo.html

 foo.html.gz

 foo.gz
	foo.gz.html.en	foo

 foo.gz

 foo.gz.html	foo.html
	foo.html.gz.en	foo

 foo.html

 foo.html.gz	foo.gz

 Looking at the table above, you will notice that it is always
 possible to use the name without any extensions in a hyperlink
 (e.g., foo). The advantage is that you
 can hide the actual type of a document rsp. file and can change
 it later, e.g., from html to
 shtml or cgi without changing any
 hyperlink references.

 If you want to continue to use a MIME-type in your
 hyperlinks (e.g. foo.html) the language
 extension (including an encoding extension if there is one)
 must be on the right hand side of the MIME-type extension
 (e.g., foo.html.en).

Note on Caching

 When a cache stores a representation, it associates it with
 the request URL. The next time that URL is requested, the cache
 can use the stored representation. But, if the resource is
 negotiable at the server, this might result in only the first
 requested variant being cached and subsequent cache hits might
 return the wrong response. To prevent this, httpd normally
 marks all responses that are returned after content negotiation
 as non-cacheable by HTTP/1.0 clients. httpd also supports the
 HTTP/1.1 protocol features to allow caching of negotiated
 responses.

 For requests which come from a HTTP/1.0 compliant client
 (either a browser or a cache), the directive CacheNegotiatedDocs can be
 used to allow caching of responses which were subject to
 negotiation. This directive can be given in the server config or
 virtual host, and takes no arguments. It has no effect on requests
 from HTTP/1.1 clients.

 For HTTP/1.1 clients, httpd sends a Vary HTTP
 response header to indicate the negotiation dimensions for the
 response. Caches can use this information to determine whether a
 subsequent request can be served from the local copy. To
 encourage a cache to use the local copy regardless of the
 negotiation dimensions, set the force-no-vary environment variable.

Available Languages: en |
 fr |
 ja |
 ko |
 tr

Comments
Notice:
This is not a Q&A section. Comments placed here should be pointed towards suggestions on improving the documentation or server, and may be removed again by our moderators if they are either implemented or considered invalid/off-topic. Questions on how to manage the Apache HTTP Server should be directed at either our IRC channel, #httpd, on Freenode, or sent to our mailing lists.

Copyright 2014 The Apache Software Foundation.
Licensed under the Apache License, Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap

