
Modules | Directives | FAQ | Glossary | Sitemap

Apache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4 > Virtual Hosts
VirtualHost Examples

Available Languages: en |
 fr |
 ja |
 ko |
 tr

 This document attempts to answer the commonly-asked questions about
 setting up virtual hosts. These scenarios are those involving multiple
 web sites running on a single server, via name-based or IP-based virtual hosts.

	 Running several name-based web
 sites on a single IP address.
	 Name-based hosts on more than one
 IP address.
	 Serving the same content on
 different IP addresses (such as an internal and external
 address).
	 Running different sites on different
 ports.
	 IP-based virtual hosting
	 Mixed port-based and ip-based virtual
 hosts
	 Mixed name-based and IP-based
 vhosts
	 Using Virtual_host and
 mod_proxy together
	 Using _default_
 vhosts
	 Migrating a name-based vhost to an
 IP-based vhost
	 Using the ServerPath
 directive

	Comments

Running several name-based web
 sites on a single IP address.

 Your server has a single IP address, and multiple aliases (CNAMES)
 point to this machine in DNS. You want to run a web server for
 www.example.com and www.example.org on this
 machine.

 Note
Creating virtual
 host configurations on your Apache server does not magically
 cause DNS entries to be created for those host names. You
 must have the names in DNS, resolving to your IP
 address, or nobody else will be able to see your web site. You
 can put entries in your hosts file for local
 testing, but that will work only from the machine with those
 hosts entries.

 # Ensure that Apache listens on port 80
Listen 80
<VirtualHost *:80>
 DocumentRoot /www/example1
 ServerName www.example.com

 # Other directives here
</VirtualHost>

<VirtualHost *:80>
 DocumentRoot /www/example2
 ServerName www.example.org

 # Other directives here
</VirtualHost>

 The asterisks match all addresses, so the main server serves no
 requests. Due to the fact that the virtual host with
 ServerName www.example.com is first
 in the configuration file, it has the highest priority and can be seen
 as the default or primary server. That means
 that if a request is received that does not match one of the specified
 ServerName directives, it will be served by this first
 VirtualHost.

 Note

 You can, if you wish, replace * with the actual
 IP address of the system, when you don't care to discriminate based
 on the IP address or port.

 However, it is additionally useful to use *
 on systems where the IP address is not predictable - for
 example if you have a dynamic IP address with your ISP, and
 you are using some variety of dynamic DNS solution. Since
 * matches any IP address, this configuration
 would work without changes whenever your IP address
 changes.

 The above configuration is what you will want to use in almost
 all name-based virtual hosting situations. The only thing that this
 configuration will not work for, in fact, is when you are serving
 different content based on differing IP addresses or ports.

Name-based hosts on more than one
 IP address.

 Note

 Any of the techniques discussed here can be extended to any
 number of IP addresses.

 The server has two IP addresses. On one (172.20.30.40), we
 will serve the "main" server, server.example.com and on the
 other (172.20.30.50), we will serve two or more virtual hosts.

 Listen 80

This is the "main" server running on 172.20.30.40
ServerName server.example.com
DocumentRoot /www/mainserver

<VirtualHost 172.20.30.50>
 DocumentRoot /www/example1
 ServerName www.example.com

 # Other directives here ...
</VirtualHost>

<VirtualHost 172.20.30.50>
 DocumentRoot /www/example2
 ServerName www.example.org

 # Other directives here ...
</VirtualHost>

 Any request to an address other than 172.20.30.50 will be
 served from the main server. A request to 172.20.30.50 with an
 unknown hostname, or no Host: header, will be served from
 www.example.com.

Serving the same content on
 different IP addresses (such as an internal and external
 address).

 The server machine has two IP addresses (192.168.1.1
 and 172.20.30.40). The machine is sitting between an
 internal (intranet) network and an external (internet) network. Outside
 of the network, the name server.example.com resolves to
 the external address (172.20.30.40), but inside the
 network, that same name resolves to the internal address
 (192.168.1.1).

 The server can be made to respond to internal and external requests
 with the same content, with just one VirtualHost
 section.

 <VirtualHost 192.168.1.1 172.20.30.40>
 DocumentRoot /www/server1
 ServerName server.example.com
 ServerAlias server
</VirtualHost>

 Now requests from both networks will be served from the same
 VirtualHost.

 Note:
On the internal
 network, one can just use the name server rather
 than the fully qualified host name
 server.example.com.

 Note also that, in the above example, you can replace the list
 of IP addresses with *, which will cause the server to
 respond the same on all addresses.

Running different sites on different
 ports.

 You have multiple domains going to the same IP and also want to
 serve multiple ports. The example below illustrates that the name-matching
 takes place after the best matching IP address and port combination
 is determined.

 Listen 80
Listen 8080

<VirtualHost 172.20.30.40:80>
 ServerName www.example.com
 DocumentRoot /www/domain-80
</VirtualHost>

<VirtualHost 172.20.30.40:8080>
 ServerName www.example.com
 DocumentRoot /www/domain-8080
</VirtualHost>

<VirtualHost 172.20.30.40:80>
 ServerName www.example.org
 DocumentRoot /www/otherdomain-80
</VirtualHost>

<VirtualHost 172.20.30.40:8080>
 ServerName www.example.org
 DocumentRoot /www/otherdomain-8080
</VirtualHost>

IP-based virtual hosting

 The server has two IP addresses (172.20.30.40 and
 172.20.30.50) which resolve to the names
 www.example.com and www.example.org
 respectively.

 Listen 80

<VirtualHost 172.20.30.40>
 DocumentRoot /www/example1
 ServerName www.example.com
</VirtualHost>

<VirtualHost 172.20.30.50>
 DocumentRoot /www/example2
 ServerName www.example.org
</VirtualHost>

 Requests for any address not specified in one of the
 <VirtualHost> directives (such as
 localhost, for example) will go to the main server, if
 there is one.

Mixed port-based and ip-based virtual
 hosts

 The server machine has two IP addresses (172.20.30.40 and
 172.20.30.50) which resolve to the names
 www.example.com and www.example.org
 respectively. In each case, we want to run hosts on ports 80 and
 8080.

 Listen 172.20.30.40:80
Listen 172.20.30.40:8080
Listen 172.20.30.50:80
Listen 172.20.30.50:8080

<VirtualHost 172.20.30.40:80>
 DocumentRoot /www/example1-80
 ServerName www.example.com
</VirtualHost>

<VirtualHost 172.20.30.40:8080>
 DocumentRoot /www/example1-8080
 ServerName www.example.com
</VirtualHost>

<VirtualHost 172.20.30.50:80>
 DocumentRoot /www/example2-80
 ServerName www.example.org
</VirtualHost>

<VirtualHost 172.20.30.50:8080>
 DocumentRoot /www/example2-8080
 ServerName www.example.org
</VirtualHost>

Mixed name-based and IP-based
 vhosts

 Any address mentioned in the argument to a virtualhost that never
 appears in another virtual host is a strictly IP-based virtual host.

 Listen 80
<VirtualHost 172.20.30.40>
 DocumentRoot /www/example1
 ServerName www.example.com
</VirtualHost>

<VirtualHost 172.20.30.40>
 DocumentRoot /www/example2
 ServerName www.example.org
</VirtualHost>

<VirtualHost 172.20.30.40>
 DocumentRoot /www/example3
 ServerName www.example.net
</VirtualHost>

IP-based
<VirtualHost 172.20.30.50>
 DocumentRoot /www/example4
 ServerName www.example.edu
</VirtualHost>

<VirtualHost 172.20.30.60>
 DocumentRoot /www/example5
 ServerName www.example.gov
</VirtualHost>

Using Virtual_host and
 mod_proxy together

 The following example allows a front-end machine to proxy a
 virtual host through to a server running on another machine. In the
 example, a virtual host of the same name is configured on a machine
 at 192.168.111.2. The ProxyPreserveHost
 On directive is used so that the desired hostname is
 passed through, in case we are proxying multiple hostnames to a
 single machine.

 <VirtualHost *:*>
 ProxyPreserveHost On
 ProxyPass / http://192.168.111.2/
 ProxyPassReverse / http://192.168.111.2/
 ServerName hostname.example.com
</VirtualHost>

Using _default_
 vhosts

 default vhosts
 for all ports

 Catching every request to any unspecified IP address and
 port, i.e., an address/port combination that is not used for
 any other virtual host.

 <VirtualHost _default_:*>
 DocumentRoot /www/default
</VirtualHost>

 Using such a default vhost with a wildcard port effectively prevents
 any request going to the main server.

 A default vhost never serves a request that was sent to an
 address/port that is used for name-based vhosts. If the request
 contained an unknown or no Host: header it is always
 served from the primary name-based vhost (the vhost for that
 address/port appearing first in the configuration file).

 You can use AliasMatch or
 RewriteRule to rewrite any
 request to a single information page (or script).

 default vhosts
 for different ports

 Same as setup 1, but the server listens on several ports and we want
 to use a second _default_ vhost for port 80.

 <VirtualHost _default_:80>
 DocumentRoot /www/default80
 # ...
</VirtualHost>

<VirtualHost _default_:*>
 DocumentRoot /www/default
 # ...
</VirtualHost>

 The default vhost for port 80 (which must appear before any
 default vhost with a wildcard port) catches all requests that were sent
 to an unspecified IP address. The main server is never used to serve a
 request.

 default vhosts
 for one port

 We want to have a default vhost for port 80, but no other default
 vhosts.

 <VirtualHost _default_:80>
DocumentRoot /www/default
...
</VirtualHost>

 A request to an unspecified address on port 80 is served from the
 default vhost. Any other request to an unspecified address and port is
 served from the main server.

 Any use of * in a virtual host declaration will have
 higher precedence than _default_.

Migrating a name-based vhost to an
 IP-based vhost

 The name-based vhost with the hostname
 www.example.org (from our name-based example, setup 2) should get its own IP
 address. To avoid problems with name servers or proxies who cached the
 old IP address for the name-based vhost we want to provide both
 variants during a migration phase.

 The solution is easy, because we can simply add the new IP address
 (172.20.30.50) to the VirtualHost
 directive.

 Listen 80
ServerName www.example.com
DocumentRoot /www/example1

<VirtualHost 172.20.30.40 172.20.30.50>
 DocumentRoot /www/example2
 ServerName www.example.org
 # ...
</VirtualHost>

<VirtualHost 172.20.30.40>
 DocumentRoot /www/example3
 ServerName www.example.net
 ServerAlias *.example.net
 # ...
</VirtualHost>

 The vhost can now be accessed through the new address (as an
 IP-based vhost) and through the old address (as a name-based
 vhost).

Using the ServerPath
 directive

 We have a server with two name-based vhosts. In order to match the
 correct virtual host a client must send the correct Host:
 header. Old HTTP/1.0 clients do not send such a header and Apache has
 no clue what vhost the client tried to reach (and serves the request
 from the primary vhost). To provide as much backward compatibility as
 possible we create a primary vhost which returns a single page
 containing links with an URL prefix to the name-based virtual
 hosts.

 <VirtualHost 172.20.30.40>
 # primary vhost
 DocumentRoot /www/subdomain
 RewriteEngine On
 RewriteRule . /www/subdomain/index.html
 # ...
</VirtualHost>

<VirtualHost 172.20.30.40>
DocumentRoot /www/subdomain/sub1
 ServerName www.sub1.domain.tld
 ServerPath /sub1/
 RewriteEngine On
 RewriteRule ^(/sub1/.*) /www/subdomain$1
 # ...
</VirtualHost>

<VirtualHost 172.20.30.40>
 DocumentRoot /www/subdomain/sub2
 ServerName www.sub2.domain.tld
 ServerPath /sub2/
 RewriteEngine On
 RewriteRule ^(/sub2/.*) /www/subdomain$1
 # ...
</VirtualHost>

 Due to the ServerPath
 directive a request to the URL
 http://www.sub1.domain.tld/sub1/ is always served
 from the sub1-vhost.
 A request to the URL
 http://www.sub1.domain.tld/ is only
 served from the sub1-vhost if the client sent a correct
 Host: header. If no Host: header is sent the
 client gets the information page from the primary host.

 Please note that there is one oddity: A request to
 http://www.sub2.domain.tld/sub1/ is also served from the
 sub1-vhost if the client sent no Host: header.

 The RewriteRule directives
 are used to make sure that a client which sent a correct
 Host: header can use both URL variants, i.e.,
 with or without URL prefix.

Available Languages: en |
 fr |
 ja |
 ko |
 tr

Comments
Notice:
This is not a Q&A section. Comments placed here should be pointed towards suggestions on improving the documentation or server, and may be removed again by our moderators if they are either implemented or considered invalid/off-topic. Questions on how to manage the Apache HTTP Server should be directed at either our IRC channel, #httpd, on Freenode, or sent to our mailing lists.

Copyright 2014 The Apache Software Foundation.
Licensed under the Apache License, Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap

