

Modules | Directives | FAQ | Glossary | Sitemap

Apache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4 > Modules

Apache Module mod_ssl

Available Languages: en |
 fr

	Description:	Strong cryptography using the Secure Sockets
Layer (SSL) and Transport Layer Security (TLS) protocols
	Status:	Extension
	Module Identifier:	ssl_module
	Source File:	mod_ssl.c

Summary

This module provides SSL v3 and TLS v1.x support for the Apache
HTTP Server. SSL v2 is no longer supported.

This module relies on OpenSSL
to provide the cryptography engine.

Further details, discussion, and examples are provided in the
SSL documentation.

Directives

	 SSLCACertificateFile
	 SSLCACertificatePath
	 SSLCADNRequestFile
	 SSLCADNRequestPath
	 SSLCARevocationCheck
	 SSLCARevocationFile
	 SSLCARevocationPath
	 SSLCertificateChainFile
	 SSLCertificateFile
	 SSLCertificateKeyFile
	 SSLCipherSuite
	 SSLCompression
	 SSLCryptoDevice
	 SSLEngine
	 SSLFIPS
	 SSLHonorCipherOrder
	 SSLInsecureRenegotiation
	 SSLOCSPDefaultResponder
	 SSLOCSPEnable
	 SSLOCSPOverrideResponder
	 SSLOCSPResponderTimeout
	 SSLOCSPResponseMaxAge
	 SSLOCSPResponseTimeSkew
	 SSLOCSPUseRequestNonce
	 SSLOpenSSLConfCmd
	 SSLOptions
	 SSLPassPhraseDialog
	 SSLProtocol
	 SSLProxyCACertificateFile
	 SSLProxyCACertificatePath
	 SSLProxyCARevocationCheck
	 SSLProxyCARevocationFile
	 SSLProxyCARevocationPath
	 SSLProxyCheckPeerCN
	 SSLProxyCheckPeerExpire
	 SSLProxyCheckPeerName
	 SSLProxyCipherSuite
	 SSLProxyEngine
	 SSLProxyMachineCertificateChainFile
	 SSLProxyMachineCertificateFile
	 SSLProxyMachineCertificatePath
	 SSLProxyProtocol
	 SSLProxyVerify
	 SSLProxyVerifyDepth
	 SSLRandomSeed
	 SSLRenegBufferSize
	 SSLRequire
	 SSLRequireSSL
	 SSLSessionCache
	 SSLSessionCacheTimeout
	 SSLSessionTicketKeyFile
	 SSLSRPUnknownUserSeed
	 SSLSRPVerifierFile
	 SSLStaplingCache
	 SSLStaplingErrorCacheTimeout
	 SSLStaplingFakeTryLater
	 SSLStaplingForceURL
	 SSLStaplingResponderTimeout
	 SSLStaplingResponseMaxAge
	 SSLStaplingResponseTimeSkew
	 SSLStaplingReturnResponderErrors
	 SSLStaplingStandardCacheTimeout
	 SSLStrictSNIVHostCheck
	 SSLUserName
	 SSLUseStapling
	 SSLVerifyClient
	 SSLVerifyDepth

Topics

	 Environment Variables
	 Custom Log Formats
	 Request Notes
	 Authorization providers for use with Require

	Comments

Environment Variables

This module can be configured to provide several items of SSL information
as additional environment variables to the SSI and CGI namespace. This
information is not provided by default for performance reasons. (See
SSLOptions StdEnvVars, below.) The generated variables
are listed in the table below. For backward compatibility the information can
be made available under different names, too. Look in the Compatibility chapter for details on the
compatibility variables.

	Variable Name:	Value Type:	Description:
	HTTPS	flag	HTTPS is being used.
	SSL_PROTOCOL	string	The SSL protocol version (SSLv3, TLSv1, TLSv1.1, TLSv1.2)
	SSL_SESSION_ID	string	The hex-encoded SSL session id
	SSL_SESSION_RESUMED	string	Initial or Resumed SSL Session. Note: multiple requests may be served over the same (Initial or Resumed) SSL session if HTTP KeepAlive is in use
	SSL_SECURE_RENEG	string	true if secure renegotiation is supported, else false
	SSL_CIPHER	string	The cipher specification name
	SSL_CIPHER_EXPORT	string	true if cipher is an export cipher
	SSL_CIPHER_USEKEYSIZE	number	Number of cipher bits (actually used)
	SSL_CIPHER_ALGKEYSIZE	number	Number of cipher bits (possible)
	SSL_COMPRESS_METHOD	string	SSL compression method negotiated
	SSL_VERSION_INTERFACE	string	The mod_ssl program version
	SSL_VERSION_LIBRARY	string	The OpenSSL program version
	SSL_CLIENT_M_VERSION	string	The version of the client certificate
	SSL_CLIENT_M_SERIAL	string	The serial of the client certificate
	SSL_CLIENT_S_DN	string	Subject DN in client's certificate
	SSL_CLIENT_S_DN_x509	string	Component of client's Subject DN
	SSL_CLIENT_I_DN	string	Issuer DN of client's certificate
	SSL_CLIENT_I_DN_x509	string	Component of client's Issuer DN
	SSL_CLIENT_V_START	string	Validity of client's certificate (start time)
	SSL_CLIENT_V_END	string	Validity of client's certificate (end time)
	SSL_CLIENT_V_REMAIN	string	Number of days until client's certificate expires
	SSL_CLIENT_A_SIG	string	Algorithm used for the signature of client's certificate
	SSL_CLIENT_A_KEY	string	Algorithm used for the public key of client's certificate
	SSL_CLIENT_CERT	string	PEM-encoded client certificate
	SSL_CLIENT_CERT_CHAIN_n	string	PEM-encoded certificates in client certificate chain
	SSL_CLIENT_VERIFY	string	NONE, SUCCESS, GENEROUS or FAILED:reason
	SSL_SERVER_M_VERSION	string	The version of the server certificate
	SSL_SERVER_M_SERIAL	string	The serial of the server certificate
	SSL_SERVER_S_DN	string	Subject DN in server's certificate
	SSL_SERVER_S_DN_x509	string	Component of server's Subject DN
	SSL_SERVER_I_DN	string	Issuer DN of server's certificate
	SSL_SERVER_I_DN_x509	string	Component of server's Issuer DN
	SSL_SERVER_V_START	string	Validity of server's certificate (start time)
	SSL_SERVER_V_END	string	Validity of server's certificate (end time)
	SSL_SERVER_A_SIG	string	Algorithm used for the signature of server's certificate
	SSL_SERVER_A_KEY	string	Algorithm used for the public key of server's certificate
	SSL_SERVER_CERT	string	PEM-encoded server certificate
	SSL_SRP_USER	string	SRP username
	SSL_SRP_USERINFO	string	SRP user info
	SSL_TLS_SNI	string	Contents of the SNI TLS extension (if supplied with ClientHello)

x509 specifies a component of an X.509 DN; one of
C,ST,L,O,OU,CN,T,I,G,S,D,UID,Email. In Apache 2.1 and
later, x509 may also include a numeric _n
suffix. If the DN in question contains multiple attributes of the
same name, this suffix is used as a zero-based index to select a
particular attribute. For example, where the server certificate
subject DN included two OU attributes, SSL_SERVER_S_DN_OU_0
and
SSL_SERVER_S_DN_OU_1 could be used to reference each. A
variable name without a _n suffix is equivalent to that
name with a _0 suffix; the first (or only) attribute.
When the environment table is populated using
the StdEnvVars option of
the SSLOptions directive, the
first (or only) attribute of any DN is added only under a non-suffixed
name; i.e. no _0 suffixed entries are added.

The format of the *_DN variables has changed in Apache HTTPD
2.3.11. See the LegacyDNStringFormat option for
SSLOptions for details.

SSL_CLIENT_V_REMAIN is only available in version 2.1
and later.

A number of additional environment variables can also be used
in SSLRequire expressions, or in custom log
formats:

HTTP_USER_AGENT PATH_INFO AUTH_TYPE
HTTP_REFERER QUERY_STRING SERVER_SOFTWARE
HTTP_COOKIE REMOTE_HOST API_VERSION
HTTP_FORWARDED REMOTE_IDENT TIME_YEAR
HTTP_HOST IS_SUBREQ TIME_MON
HTTP_PROXY_CONNECTION DOCUMENT_ROOT TIME_DAY
HTTP_ACCEPT SERVER_ADMIN TIME_HOUR
THE_REQUEST SERVER_NAME TIME_MIN
REQUEST_FILENAME SERVER_PORT TIME_SEC
REQUEST_METHOD SERVER_PROTOCOL TIME_WDAY
REQUEST_SCHEME REMOTE_ADDR TIME
REQUEST_URI REMOTE_USER

In these contexts, two special formats can also be used:

	ENV:variablename
	This will expand to the standard environment
 variable variablename.
	HTTP:headername
	This will expand to the value of the request header with name
 headername.

Custom Log Formats

When mod_ssl is built into Apache or at least
loaded (under DSO situation) additional functions exist for the Custom Log Format of
mod_log_config. First there is an
additional ``%{varname}x''
eXtension format function which can be used to expand any variables
provided by any module, especially those provided by mod_ssl which can
you find in the above table.

For backward compatibility there is additionally a special
``%{name}c'' cryptography format function
provided. Information about this function is provided in the Compatibility chapter.

Example
CustomLog logs/ssl_request_log "%t %h %{SSL_PROTOCOL}x %{SSL_CIPHER}x \"%r\" %b"

Request Notes

mod_ssl sets "notes" for the request which can be
used in logging with the %{name}n format
string in mod_log_config.

The notes supported are as follows:

	ssl-access-forbidden
	This note is set to the value 1 if access was
 denied due to an SSLRequire
 or SSLRequireSSL directive.
	ssl-secure-reneg
	If mod_ssl is built against a version of
 OpenSSL which supports the secure renegotiation extension, this note
 is set to the value 1 if SSL is in used for the current
 connection, and the client also supports the secure renegotiation
 extension. If the client does not support the secure renegotiation
 extension, the note is set to the value 0.
 If mod_ssl is not built against a version of
 OpenSSL which supports secure renegotiation, or if SSL is not in use
 for the current connection, the note is not set.

Authorization providers for use with Require

 mod_ssl provides a few authentication providers for use
 with mod_authz_core's
 Require directive.

 Require ssl

 The ssl provider denies access if a connection is not
 encrypted with SSL. This is similar to the
 SSLRequireSSL directive.

 Require ssl

 Require ssl-verify-client

 The ssl provider allows access if the user is
 authenticated with a valid client certificate. This is only
 useful if SSLVerifyClient optional is in effect.

 The following example grants access if the user is authenticated
 either with a client certificate or by username and password.

 Require ssl-verify-client

 Require valid-user

SSLCACertificateFile Directive

	Description:	File of concatenated PEM-encoded CA Certificates
for Client Auth
	Syntax:	SSLCACertificateFile file-path
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

This directive sets the all-in-one file where you can assemble the
Certificates of Certification Authorities (CA) whose clients you deal
with. These are used for Client Authentication. Such a file is simply the
concatenation of the various PEM-encoded Certificate files, in order of
preference. This can be used alternatively and/or additionally to
SSLCACertificatePath.

Example
SSLCACertificateFile /usr/local/apache2/conf/ssl.crt/ca-bundle-client.crt

SSLCACertificatePath Directive

	Description:	Directory of PEM-encoded CA Certificates for
Client Auth
	Syntax:	SSLCACertificatePath directory-path
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

This directive sets the directory where you keep the Certificates of
Certification Authorities (CAs) whose clients you deal with. These are used to
verify the client certificate on Client Authentication.

The files in this directory have to be PEM-encoded and are accessed through
hash filenames. So usually you can't just place the Certificate files
there: you also have to create symbolic links named
hash-value.N. And you should always make sure this directory
contains the appropriate symbolic links.

Example
SSLCACertificatePath /usr/local/apache2/conf/ssl.crt/

SSLCADNRequestFile Directive

	Description:	File of concatenated PEM-encoded CA Certificates
for defining acceptable CA names
	Syntax:	SSLCADNRequestFile file-path
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

When a client certificate is requested by mod_ssl, a list of
acceptable Certificate Authority names is sent to the client
in the SSL handshake. These CA names can be used by the client to
select an appropriate client certificate out of those it has
available.

If neither of the directives SSLCADNRequestPath or SSLCADNRequestFile are given, then the
set of acceptable CA names sent to the client is the names of all the
CA certificates given by the SSLCACertificateFile and SSLCACertificatePath directives; in other
words, the names of the CAs which will actually be used to verify the
client certificate.

In some circumstances, it is useful to be able to send a set of
acceptable CA names which differs from the actual CAs used to verify
the client certificate - for example, if the client certificates are
signed by intermediate CAs. In such cases, SSLCADNRequestPath and/or SSLCADNRequestFile can be used; the
acceptable CA names are then taken from the complete set of
certificates in the directory and/or file specified by this pair of
directives.

SSLCADNRequestFile must
specify an all-in-one file containing a concatenation of
PEM-encoded CA certificates.

Example
SSLCADNRequestFile /usr/local/apache2/conf/ca-names.crt

SSLCADNRequestPath Directive

	Description:	Directory of PEM-encoded CA Certificates for
defining acceptable CA names
	Syntax:	SSLCADNRequestPath directory-path
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

This optional directive can be used to specify the set of
acceptable CA names which will be sent to the client when a
client certificate is requested. See the SSLCADNRequestFile directive for more
details.

The files in this directory have to be PEM-encoded and are accessed
through hash filenames. So usually you can't just place the
Certificate files there: you also have to create symbolic links named
hash-value.N. And you should always make sure
this directory contains the appropriate symbolic links.

Example
SSLCADNRequestPath /usr/local/apache2/conf/ca-names.crt/

SSLCARevocationCheck Directive

	Description:	Enable CRL-based revocation checking
	Syntax:	SSLCARevocationCheck chain|leaf|none
	Default:	SSLCARevocationCheck none
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

Enables certificate revocation list (CRL) checking. At least one of
SSLCARevocationFile
or SSLCARevocationPath must be
configured. When set to chain (recommended setting),
CRL checks are applied to all certificates in the chain, while setting it to
leaf limits the checks to the end-entity cert.

When set to chain or leaf,
CRLs must be available for successful validation

Prior to version 2.3.15, CRL checking in mod_ssl also succeeded when
no CRL(s) were found in any of the locations configured with
SSLCARevocationFile
or SSLCARevocationPath.
With the introduction of this directive, the behavior has been changed:
when checking is enabled, CRLs must be present for the validation
to succeed - otherwise it will fail with an
"unable to get certificate CRL" error.

Example
SSLCARevocationCheck chain

SSLCARevocationFile Directive

	Description:	File of concatenated PEM-encoded CA CRLs for
Client Auth
	Syntax:	SSLCARevocationFile file-path
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

This directive sets the all-in-one file where you can
assemble the Certificate Revocation Lists (CRL) of Certification
Authorities (CA) whose clients you deal with. These are used
for Client Authentication. Such a file is simply the concatenation of
the various PEM-encoded CRL files, in order of preference. This can be
used alternatively and/or additionally to SSLCARevocationPath.

Example
SSLCARevocationFile /usr/local/apache2/conf/ssl.crl/ca-bundle-client.crl

SSLCARevocationPath Directive

	Description:	Directory of PEM-encoded CA CRLs for
Client Auth
	Syntax:	SSLCARevocationPath directory-path
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

This directive sets the directory where you keep the Certificate Revocation
Lists (CRL) of Certification Authorities (CAs) whose clients you deal with.
These are used to revoke the client certificate on Client Authentication.

The files in this directory have to be PEM-encoded and are accessed through
hash filenames. So usually you have not only to place the CRL files there.
Additionally you have to create symbolic links named
hash-value.rN. And you should always make sure this directory
contains the appropriate symbolic links.

Example
SSLCARevocationPath /usr/local/apache2/conf/ssl.crl/

SSLCertificateChainFile Directive

	Description:	File of PEM-encoded Server CA Certificates
	Syntax:	SSLCertificateChainFile file-path
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

SSLCertificateChainFile is deprecated

SSLCertificateChainFile became obsolete with version 2.4.8,
when SSLCertificateFile
was extended to also load intermediate CA certificates from the server
certificate file.

This directive sets the optional all-in-one file where you can
assemble the certificates of Certification Authorities (CA) which form the
certificate chain of the server certificate. This starts with the issuing CA
certificate of the server certificate and can range up to the root CA
certificate. Such a file is simply the concatenation of the various
PEM-encoded CA Certificate files, usually in certificate chain order.

This should be used alternatively and/or additionally to SSLCACertificatePath for explicitly
constructing the server certificate chain which is sent to the browser
in addition to the server certificate. It is especially useful to
avoid conflicts with CA certificates when using client
authentication. Because although placing a CA certificate of the
server certificate chain into SSLCACertificatePath has the same effect
for the certificate chain construction, it has the side-effect that
client certificates issued by this same CA certificate are also
accepted on client authentication.

But be careful: Providing the certificate chain works only if you are using a
single RSA or DSA based server certificate. If you are
using a coupled RSA+DSA certificate pair, this will work only if actually both
certificates use the same certificate chain. Else the browsers will be
confused in this situation.

Example
SSLCertificateChainFile /usr/local/apache2/conf/ssl.crt/ca.crt

SSLCertificateFile Directive

	Description:	Server PEM-encoded X.509 certificate data file
	Syntax:	SSLCertificateFile file-path
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

This directive points to a file with certificate data in PEM format.
At a minimum, the file must include an end-entity (leaf) certificate.
Beginning with version 2.4.8, it may also include intermediate CA
certificates, sorted from leaf to root, and obsoletes
SSLCertificateChainFile.

Additional optional elements are DH parameters and/or an EC curve name
for ephemeral keys, as generated by openssl dhparam and
openssl ecparam, respectively (supported in version 2.4.7
or later) and finally, the end-entity certificate's private key.
If the private key is encrypted, the pass phrase dialog is forced
at startup time.

This directive can be used multiple times (referencing different filenames)
to support multiple algorithms for server authentication - typically
RSA, DSA, and ECC. The number of supported algorithms depends on the
OpenSSL version being used for mod_ssl: with version 1.0.0 or later,
openssl list-public-key-algorithms will output a list
of supported algorithms.

When running with OpenSSL 1.0.2 or later, this directive allows
to configure the intermediate CA chain on a per-certificate basis,
which removes a limitation of the (now obsolete)
SSLCertificateChainFile directive.
DH and ECDH parameters, however, are only read from the first
SSLCertificateFile directive, as they
are applied independently of the authentication algorithm type.

DH parameter interoperability with primes > 1024 bit

Beginning with version 2.4.7, mod_ssl makes use of
standardized DH parameters with prime lengths of 2048, 3072 and 4096 bits
and with additional prime lengths of 6144 and 8192 bits beginning with
version 2.4.10
(from RFC 3526), and hands
them out to clients based on the length of the certificate's RSA/DSA key.
With Java-based clients in particular (Java 7 or earlier), this may lead
to handshake failures - see this
FAQ answer for working around
such issues.

Example
SSLCertificateFile /usr/local/apache2/conf/ssl.crt/server.crt

SSLCertificateKeyFile Directive

	Description:	Server PEM-encoded private key file
	Syntax:	SSLCertificateKeyFile file-path
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

This directive points to the PEM-encoded private key file for the
server (the private key may also be combined with the certificate in the
SSLCertificateFile, but this practice
is discouraged). If the contained private key is encrypted, the pass phrase
dialog is forced at startup time.

The directive can be used multiple times (referencing different filenames)
to support multiple algorithms for server authentication. For each
SSLCertificateKeyFile
directive, there must be a matching SSLCertificateFile
directive.

Example
SSLCertificateKeyFile /usr/local/apache2/conf/ssl.key/server.key

SSLCipherSuite Directive

	Description:	Cipher Suite available for negotiation in SSL
handshake
	Syntax:	SSLCipherSuite cipher-spec
	Default:	SSLCipherSuite DEFAULT (depends on OpenSSL version)
	Context:	server config, virtual host, directory, .htaccess
	Override:	AuthConfig
	Status:	Extension
	Module:	mod_ssl

This complex directive uses a colon-separated cipher-spec string
consisting of OpenSSL cipher specifications to configure the Cipher Suite the
client is permitted to negotiate in the SSL handshake phase. Notice that this
directive can be used both in per-server and per-directory context. In
per-server context it applies to the standard SSL handshake when a connection
is established. In per-directory context it forces a SSL renegotiation with the
reconfigured Cipher Suite after the HTTP request was read but before the HTTP
response is sent.

An SSL cipher specification in cipher-spec is composed of 4 major
attributes plus a few extra minor ones:

	Key Exchange Algorithm:

 RSA, Diffie-Hellman, Elliptic Curve Diffie-Hellman, Secure Remote Password

	Authentication Algorithm:

 RSA, Diffie-Hellman, DSS, ECDSA, or none.

	Cipher/Encryption Algorithm:

 AES, DES, Triple-DES, RC4, RC2, IDEA, etc.

	MAC Digest Algorithm:

 MD5, SHA or SHA1, SHA256, SHA384.

An SSL cipher can also be an export cipher. SSLv2 ciphers are no longer
supported. To specify which ciphers to use, one can either specify all the
Ciphers, one at a time, or use aliases to specify the preference and order
for the ciphers (see Table
1). The actually available ciphers and aliases depends on the used
openssl version. Newer openssl versions may include additional ciphers.

	Tag	Description
	Key Exchange Algorithm:
	kRSA	RSA key exchange
	kDHr	Diffie-Hellman key exchange with RSA key
	kDHd	Diffie-Hellman key exchange with DSA key
	kEDH	Ephemeral (temp.key) Diffie-Hellman key exchange (no cert)
	kSRP	Secure Remote Password (SRP) key exchange
	Authentication Algorithm:
	aNULL	No authentication
	aRSA	RSA authentication
	aDSS	DSS authentication
	aDH	Diffie-Hellman authentication
	Cipher Encoding Algorithm:
	eNULL	No encryption
	NULL	alias for eNULL
	AES	AES encryption
	DES	DES encryption
	3DES	Triple-DES encryption
	RC4	RC4 encryption
	RC2	RC2 encryption
	IDEA	IDEA encryption
	MAC Digest Algorithm:
	MD5	MD5 hash function
	SHA1	SHA1 hash function
	SHA	alias for SHA1
	SHA256	SHA256 hash function
	SHA384	SHA384 hash function
	Aliases:
	SSLv3	all SSL version 3.0 ciphers
	TLSv1	all TLS version 1.0 ciphers
	EXP	all export ciphers
	EXPORT40	all 40-bit export ciphers only
	EXPORT56	all 56-bit export ciphers only
	LOW	all low strength ciphers (no export, single DES)
	MEDIUM	all ciphers with 128 bit encryption
	HIGH	all ciphers using Triple-DES
	RSA	all ciphers using RSA key exchange
	DH	all ciphers using Diffie-Hellman key exchange
	EDH	all ciphers using Ephemeral Diffie-Hellman key exchange
	ECDH	Elliptic Curve Diffie-Hellman key exchange
	ADH	all ciphers using Anonymous Diffie-Hellman key exchange
	AECDH	all ciphers using Anonymous Elliptic Curve Diffie-Hellman key exchange
	SRP	all ciphers using Secure Remote Password (SRP) key exchange
	DSS	all ciphers using DSS authentication
	ECDSA	all ciphers using ECDSA authentication
	aNULL	all ciphers using no authentication

Now where this becomes interesting is that these can be put together
to specify the order and ciphers you wish to use. To speed this up
there are also aliases (SSLv3, TLSv1, EXP, LOW, MEDIUM,
HIGH) for certain groups of ciphers. These tags can be joined
together with prefixes to form the cipher-spec. Available
prefixes are:

	none: add cipher to list
	+: move matching ciphers to the current location in list
	-: remove cipher from list (can be added later again)
	!: kill cipher from list completely (can not be added later again)

aNULL, eNULL and EXP
ciphers are always disabled

Beginning with version 2.4.7, null and export-grade
ciphers are always disabled, as mod_ssl unconditionally prepends any supplied
cipher suite string with !aNULL:!eNULL:!EXP: at initialization.

A simpler way to look at all of this is to use the ``openssl ciphers
-v'' command which provides a nice way to successively create the
correct cipher-spec string. The default cipher-spec string
depends on the version of the OpenSSL libraries used. Let's suppose it is
``RC4-SHA:AES128-SHA:HIGH:MEDIUM:!aNULL:!MD5'' which
means the following: Put RC4-SHA and AES128-SHA at
the beginning. We do this, because these ciphers offer a good compromise
between speed and security. Next, include high and medium security ciphers.
Finally, remove all ciphers which do not authenticate, i.e. for SSL the
Anonymous Diffie-Hellman ciphers, as well as all ciphers which use
MD5 as hash algorithm, because it has been proven insufficient.

$ openssl ciphers -v 'RC4-SHA:AES128-SHA:HIGH:MEDIUM:!aNULL:!MD5'
RC4-SHA SSLv3 Kx=RSA Au=RSA Enc=RC4(128) Mac=SHA1
AES128-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA1
DHE-RSA-AES256-SHA SSLv3 Kx=DH Au=RSA Enc=AES(256) Mac=SHA1
...
SEED-SHA SSLv3 Kx=RSA Au=RSA Enc=SEED(128) Mac=SHA1
PSK-RC4-SHA SSLv3 Kx=PSK Au=PSK Enc=RC4(128) Mac=SHA1
KRB5-RC4-SHA SSLv3 Kx=KRB5 Au=KRB5 Enc=RC4(128) Mac=SHA1

The complete list of particular RSA & DH ciphers for SSL is given in Table 2.

Example
SSLCipherSuite RSA:!EXP:!NULL:+HIGH:+MEDIUM:-LOW

	Cipher-Tag	Protocol	Key Ex.	Auth.	Enc.	MAC	Type
	RSA Ciphers:
	DES-CBC3-SHA	SSLv3	RSA	RSA	3DES(168)	SHA1	
	IDEA-CBC-SHA	SSLv3	RSA	RSA	IDEA(128)	SHA1	
	RC4-SHA	SSLv3	RSA	RSA	RC4(128)	SHA1	
	RC4-MD5	SSLv3	RSA	RSA	RC4(128)	MD5	
	DES-CBC-SHA	SSLv3	RSA	RSA	DES(56)	SHA1	
	EXP-DES-CBC-SHA	SSLv3	RSA(512)	RSA	DES(40)	SHA1	 export
	EXP-RC2-CBC-MD5	SSLv3	RSA(512)	RSA	RC2(40)	MD5	 export
	EXP-RC4-MD5	SSLv3	RSA(512)	RSA	RC4(40)	MD5	 export
	NULL-SHA	SSLv3	RSA	RSA	None	SHA1	
	NULL-MD5	SSLv3	RSA	RSA	None	MD5	
	Diffie-Hellman Ciphers:
	ADH-DES-CBC3-SHA	SSLv3	DH	None	3DES(168)	SHA1	
	ADH-DES-CBC-SHA	SSLv3	DH	None	DES(56)	SHA1	
	ADH-RC4-MD5	SSLv3	DH	None	RC4(128)	MD5	
	EDH-RSA-DES-CBC3-SHA	SSLv3	DH	RSA	3DES(168)	SHA1	
	EDH-DSS-DES-CBC3-SHA	SSLv3	DH	DSS	3DES(168)	SHA1	
	EDH-RSA-DES-CBC-SHA	SSLv3	DH	RSA	DES(56)	SHA1	
	EDH-DSS-DES-CBC-SHA	SSLv3	DH	DSS	DES(56)	SHA1	
	EXP-EDH-RSA-DES-CBC-SHA	SSLv3	DH(512)	RSA	DES(40)	SHA1	 export
	EXP-EDH-DSS-DES-CBC-SHA	SSLv3	DH(512)	DSS	DES(40)	SHA1	 export
	EXP-ADH-DES-CBC-SHA	SSLv3	DH(512)	None	DES(40)	SHA1	 export
	EXP-ADH-RC4-MD5	SSLv3	DH(512)	None	RC4(40)	MD5	 export

SSLCompression Directive

	Description:	Enable compression on the SSL level
	Syntax:	SSLCompression on|off
	Default:	SSLCompression off
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl
	Compatibility:	Available in httpd 2.4.3 and later, if using OpenSSL 0.9.8 or later;
virtual host scope available if using OpenSSL 1.0.0 or later.
The default used to be on in version 2.4.3.

This directive allows to enable compression on the SSL level.

Enabling compression causes security issues in most setups (the so called
CRIME attack).

SSLCryptoDevice Directive

	Description:	Enable use of a cryptographic hardware accelerator
	Syntax:	SSLCryptoDevice engine
	Default:	SSLCryptoDevice builtin
	Context:	server config
	Status:	Extension
	Module:	mod_ssl

This directive enables use of a cryptographic hardware accelerator
board to offload some of the SSL processing overhead. This directive
can only be used if the SSL toolkit is built with "engine" support;
OpenSSL 0.9.7 and later releases have "engine" support by default, the
separate "-engine" releases of OpenSSL 0.9.6 must be used.

To discover which engine names are supported, run the command
"openssl engine".

Example
For a Broadcom accelerator:
SSLCryptoDevice ubsec

SSLEngine Directive

	Description:	SSL Engine Operation Switch
	Syntax:	SSLEngine on|off|optional
	Default:	SSLEngine off
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

This directive toggles the usage of the SSL/TLS Protocol Engine. This
is should be used inside a <VirtualHost> section to enable SSL/TLS for a
that virtual host. By default the SSL/TLS Protocol Engine is
disabled for both the main server and all configured virtual hosts.

Example
<VirtualHost _default_:443>
SSLEngine on
#...
</VirtualHost>

In Apache 2.1 and later, SSLEngine can be set to
optional. This enables support for
RFC 2817, Upgrading to TLS
Within HTTP/1.1. At this time no web browsers support RFC 2817.

SSLFIPS Directive

	Description:	SSL FIPS mode Switch
	Syntax:	SSLFIPS on|off
	Default:	SSLFIPS off
	Context:	server config
	Status:	Extension
	Module:	mod_ssl

This directive toggles the usage of the SSL library FIPS_mode flag.
It must be set in the global server context and cannot be configured
with conflicting settings (SSLFIPS on followed by SSLFIPS off or
similar). The mode applies to all SSL library operations.

If httpd was compiled against an SSL library which did not support
the FIPS_mode flag, SSLFIPS on will fail. Refer to the
FIPS 140-2 Security Policy document of the SSL provider library for
specific requirements to use mod_ssl in a FIPS 140-2 approved mode
of operation; note that mod_ssl itself is not validated, but may be
described as using FIPS 140-2 validated cryptographic module, when
all components are assembled and operated under the guidelines imposed
by the applicable Security Policy.

SSLHonorCipherOrder Directive

	Description:	Option to prefer the server's cipher preference order
	Syntax:	SSLHonorCipherOrder on|off
	Default:	SSLHonorCipherOrder off
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

When choosing a cipher during an SSLv3 or TLSv1 handshake, normally
the client's preference is used. If this directive is enabled, the
server's preference will be used instead.

Example
SSLHonorCipherOrder on

SSLInsecureRenegotiation Directive

	Description:	Option to enable support for insecure renegotiation
	Syntax:	SSLInsecureRenegotiation on|off
	Default:	SSLInsecureRenegotiation off
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl
	Compatibility:	Available in httpd 2.2.15 and later, if using OpenSSL 0.9.8m or later

As originally specified, all versions of the SSL and TLS protocols
(up to and including TLS/1.2) were vulnerable to a Man-in-the-Middle
attack
(CVE-2009-3555)
during a renegotiation. This vulnerability allowed an attacker to
"prefix" a chosen plaintext to the HTTP request as seen by the web
server. A protocol extension was developed which fixed this
vulnerability if supported by both client and server.

If mod_ssl is linked against OpenSSL version 0.9.8m
or later, by default renegotiation is only supported with
clients supporting the new protocol extension. If this directive is
enabled, renegotiation will be allowed with old (unpatched) clients,
albeit insecurely.

Security warning

If this directive is enabled, SSL connections will be vulnerable to
the Man-in-the-Middle prefix attack as described
in CVE-2009-3555.

Example
SSLInsecureRenegotiation on

The SSL_SECURE_RENEG environment variable can be used
from an SSI or CGI script to determine whether secure renegotiation is
supported for a given SSL connection.

SSLOCSPDefaultResponder Directive

	Description:	Set the default responder URI for OCSP validation
	Syntax:	SSLOCSDefaultResponder uri
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

This option sets the default OCSP responder to use. If SSLOCSPOverrideResponder is not enabled,
the URI given will be used only if no responder URI is specified in
the certificate being verified.

SSLOCSPEnable Directive

	Description:	Enable OCSP validation of the client certificate chain
	Syntax:	SSLOCSPEnable on|off
	Default:	SSLOCSPEnable off
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

This option enables OCSP validation of the client certificate
chain. If this option is enabled, certificates in the client's
certificate chain will be validated against an OCSP responder after
normal verification (including CRL checks) have taken place.

The OCSP responder used is either extracted from the certificate
itself, or derived by configuration; see the
SSLOCSPDefaultResponder and
SSLOCSPOverrideResponder
directives.

Example
SSLVerifyClient on
SSLOCSPEnable on
SSLOCSPDefaultResponder http://responder.example.com:8888/responder
SSLOCSPOverrideResponder on

SSLOCSPOverrideResponder Directive

	Description:	Force use of the default responder URI for OCSP validation
	Syntax:	SSLOCSPOverrideResponder on|off
	Default:	SSLOCSPOverrideResponder off
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

This option forces the configured default OCSP responder to be used
during OCSP certificate validation, regardless of whether the
certificate being validated references an OCSP responder.

SSLOCSPResponderTimeout Directive

	Description:	Timeout for OCSP queries
	Syntax:	SSLOCSPResponderTimeout seconds
	Default:	SSLOCSPResponderTimeout 10
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

This option sets the timeout for queries to OCSP responders, when
SSLOCSPEnable is turned on.

SSLOCSPResponseMaxAge Directive

	Description:	Maximum allowable age for OCSP responses
	Syntax:	SSLOCSPResponseMaxAge seconds
	Default:	SSLOCSPResponseMaxAge -1
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

This option sets the maximum allowable age ("freshness") for OCSP responses.
The default value (-1) does not enforce a maximum age,
which means that OCSP responses are considered valid as long as their
nextUpdate field is in the future.

SSLOCSPResponseTimeSkew Directive

	Description:	Maximum allowable time skew for OCSP response validation
	Syntax:	SSLOCSPResponseTimeSkew seconds
	Default:	SSLOCSPResponseTimeSkew 300
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

This option sets the maximum allowable time skew for OCSP responses
(when checking their thisUpdate and nextUpdate fields).

SSLOCSPUseRequestNonce Directive

	Description:	Use a nonce within OCSP queries
	Syntax:	SSLOCSPUseRequestNonce on|off
	Default:	SSLOCSPUseRequestNonce on
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl
	Compatibility:	Available in httpd 2.4.10 and later

This option determines whether queries to OCSP responders should contain
a nonce or not. By default, a query nonce is always used and checked against
the response's one. When the responder does not use nonces (e.g. Microsoft OCSP
Responder), this option should be turned off.

SSLOpenSSLConfCmd Directive

	Description:	Configure OpenSSL parameters through its SSL_CONF API
	Syntax:	SSLOpenSSLConfCmd command-name command-value
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl
	Compatibility:	Available in httpd 2.4.8 and later, if using OpenSSL 1.0.2 or later

This directive exposes OpenSSL's SSL_CONF API to mod_ssl,
allowing a flexible configuration of OpenSSL parameters without the need
of implementing additional mod_ssl directives when new
features are added to OpenSSL.

The set of available SSLOpenSSLConfCmd commands
depends on the OpenSSL version being used for mod_ssl
(at least version 1.0.2 is required). For a list of supported command
names, see the section Supported configuration file commands in the
SSL_CONF_cmd(3) manual page for OpenSSL.

Some of the SSLOpenSSLConfCmd commands can be used
as an alternative to existing directives (such as
SSLCipherSuite or
SSLProtocol),
though it should be noted that the syntax / allowable values for the parameters
may sometimes differ.

Examples
SSLOpenSSLConfCmd Options -SessionTicket,ServerPreference
SSLOpenSSLConfCmd ECDHParameters brainpoolP256r1
SSLOpenSSLConfCmd ServerInfoFile /usr/local/apache2/conf/server-info.pem
SSLOpenSSLConfCmd Protocol "-ALL, TLSv1.2"
SSLOpenSSLConfCmd SignatureAlgorithms RSA+SHA384:ECDSA+SHA256

SSLOptions Directive

	Description:	Configure various SSL engine run-time options
	Syntax:	SSLOptions [+|-]option ...
	Context:	server config, virtual host, directory, .htaccess
	Override:	Options
	Status:	Extension
	Module:	mod_ssl

This directive can be used to control various run-time options on a
per-directory basis. Normally, if multiple SSLOptions
could apply to a directory, then the most specific one is taken
completely; the options are not merged. However if all the
options on the SSLOptions directive are preceded by a
plus (+) or minus (-) symbol, the options
are merged. Any options preceded by a + are added to the
options currently in force, and any options preceded by a
- are removed from the options currently in force.

The available options are:

	StdEnvVars

 When this option is enabled, the standard set of SSL related CGI/SSI
 environment variables are created. This per default is disabled for
 performance reasons, because the information extraction step is a
 rather expensive operation. So one usually enables this option for
 CGI and SSI requests only.

	ExportCertData

 When this option is enabled, additional CGI/SSI environment variables are
 created: SSL_SERVER_CERT, SSL_CLIENT_CERT and
 SSL_CLIENT_CERT_CHAIN_n (with n = 0,1,2,..).
 These contain the PEM-encoded X.509 Certificates of server and client for
 the current HTTPS connection and can be used by CGI scripts for deeper
 Certificate checking. Additionally all other certificates of the client
 certificate chain are provided, too. This bloats up the environment a
 little bit which is why you have to use this option to enable it on
 demand.

	FakeBasicAuth

 When this option is enabled, the Subject Distinguished Name (DN) of the
 Client X509 Certificate is translated into a HTTP Basic Authorization
 username. This means that the standard Apache authentication methods can
 be used for access control. The user name is just the Subject of the
 Client's X509 Certificate (can be determined by running OpenSSL's
 openssl x509 command: openssl x509 -noout -subject -in
 certificate.crt). Note that no password is
 obtained from the user. Every entry in the user file needs this password:
 ``xxj31ZMTZzkVA'', which is the DES-encrypted version of the
 word `password''. Those who live under MD5-based encryption
 (for instance under FreeBSD or BSD/OS, etc.) should use the following MD5
 hash of the same word: ``1OXLyS...$Owx8s2/m9/gfkcRVXzgoE/''.

 Note that the AuthBasicFake
 directive within mod_auth_basic can be used as a more
 general mechanism for faking basic authentication, giving control over the
 structure of both the username and password.

	StrictRequire

 This forces forbidden access when SSLRequireSSL or
 SSLRequire successfully decided that access should be
 forbidden. Usually the default is that in the case where a ``Satisfy
 any'' directive is used, and other access restrictions are passed,
 denial of access due to SSLRequireSSL or
 SSLRequire is overridden (because that's how the Apache
 Satisfy mechanism should work.) But for strict access restriction
 you can use SSLRequireSSL and/or SSLRequire in
 combination with an ``SSLOptions +StrictRequire''. Then an
 additional ``Satisfy Any'' has no chance once mod_ssl has
 decided to deny access.

	OptRenegotiate

 This enables optimized SSL connection renegotiation handling when SSL
 directives are used in per-directory context. By default a strict
 scheme is enabled where every per-directory reconfiguration of
 SSL parameters causes a full SSL renegotiation handshake. When this
 option is used mod_ssl tries to avoid unnecessary handshakes by doing more
 granular (but still safe) parameter checks. Nevertheless these granular
 checks sometimes may not be what the user expects, so enable this on a
 per-directory basis only, please.

	LegacyDNStringFormat

 This option influences how values of the
 SSL_{CLIENT,SERVER}_{I,S}_DN variables are formatted. Since
 version 2.3.11, Apache HTTPD uses a RFC 2253 compatible format by
 default. This uses commas as delimiters between the attributes, allows the
 use of non-ASCII characters (which are converted to UTF8), escapes
 various special characters with backslashes, and sorts the attributes
 with the "C" attribute last.

 If LegacyDNStringFormat is set, the old format will be
 used which sorts the "C" attribute first, uses slashes as separators, and
 does not handle non-ASCII and special characters in any consistent way.

Example
SSLOptions +FakeBasicAuth -StrictRequire
<Files ~ "\.(cgi|shtml)$">
 SSLOptions +StdEnvVars -ExportCertData
<Files>

SSLPassPhraseDialog Directive

	Description:	Type of pass phrase dialog for encrypted private
keys
	Syntax:	SSLPassPhraseDialog type
	Default:	SSLPassPhraseDialog builtin
	Context:	server config
	Status:	Extension
	Module:	mod_ssl

When Apache starts up it has to read the various Certificate (see
SSLCertificateFile) and
Private Key (see SSLCertificateKeyFile) files of the
SSL-enabled virtual servers. Because for security reasons the Private
Key files are usually encrypted, mod_ssl needs to query the
administrator for a Pass Phrase in order to decrypt those files. This
query can be done in two ways which can be configured by
type:

	builtin

 This is the default where an interactive terminal dialog occurs at startup
 time just before Apache detaches from the terminal. Here the administrator
 has to manually enter the Pass Phrase for each encrypted Private Key file.
 Because a lot of SSL-enabled virtual hosts can be configured, the
 following reuse-scheme is used to minimize the dialog: When a Private Key
 file is encrypted, all known Pass Phrases (at the beginning there are
 none, of course) are tried. If one of those known Pass Phrases succeeds no
 dialog pops up for this particular Private Key file. If none succeeded,
 another Pass Phrase is queried on the terminal and remembered for the next
 round (where it perhaps can be reused).

 This scheme allows mod_ssl to be maximally flexible (because for N encrypted
 Private Key files you can use N different Pass Phrases - but then
 you have to enter all of them, of course) while minimizing the terminal
 dialog (i.e. when you use a single Pass Phrase for all N Private Key files
 this Pass Phrase is queried only once).

	|/path/to/program [args...]

 This mode allows an external program to be used which acts as a
 pipe to a particular input device; the program is sent the standard
 prompt text used for the builtin mode on
 stdin, and is expected to write password strings on
 stdout. If several passwords are needed (or an
 incorrect password is entered), additional prompt text will be
 written subsequent to the first password being returned, and more
 passwords must then be written back.

	exec:/path/to/program

 Here an external program is configured which is called at startup for each
 encrypted Private Key file. It is called with two arguments (the first is
 of the form ``servername:portnumber'', the second is either
 ``RSA'', ``DSA'', ``ECC'' or an
 integer index starting at 3 if more than three keys are configured), which
 indicate for which server and algorithm it has to print the corresponding
 Pass Phrase to stdout. In versions 2.4.8 (unreleased)
 and 2.4.9, it is called with one argument, a string of the
 form ``servername:portnumber:index'' (with index
 being a zero-based integer number), which indicate the server, TCP port
 and certificate number. The intent is that this external
 program first runs security checks to make sure that the system is not
 compromised by an attacker, and only when these checks were passed
 successfully it provides the Pass Phrase.

 Both these security checks, and the way the Pass Phrase is determined, can
 be as complex as you like. Mod_ssl just defines the interface: an
 executable program which provides the Pass Phrase on stdout.
 Nothing more or less! So, if you're really paranoid about security, here
 is your interface. Anything else has to be left as an exercise to the
 administrator, because local security requirements are so different.

 The reuse-algorithm above is used here, too. In other words: The external
 program is called only once per unique Pass Phrase.

Example
SSLPassPhraseDialog exec:/usr/local/apache/sbin/pp-filter

SSLProtocol Directive

	Description:	Configure usable SSL/TLS protocol versions
	Syntax:	SSLProtocol [+|-]protocol ...
	Default:	SSLProtocol all
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

This directive can be used to control which versions of the SSL/TLS protocol
will be accepted in new connections.

The available (case-insensitive) protocols are:

	SSLv3

 This is the Secure Sockets Layer (SSL) protocol, version 3.0, from
 the Netscape Corporation.
 It is the successor to SSLv2 and the predecessor to TLSv1.

	TLSv1

 This is the Transport Layer Security (TLS) protocol, version 1.0.
 It is the successor to SSLv3 and is defined in
 RFC 2246.
 It is supported by nearly every client.

	TLSv1.1 (when using OpenSSL 1.0.1 and later)

 A revision of the TLS 1.0 protocol, as defined in
 RFC 4346.

	TLSv1.2 (when using OpenSSL 1.0.1 and later)

 A revision of the TLS 1.1 protocol, as defined in
 RFC 5246.

	all

 This is a shortcut for ``+SSLv3 +TLSv1'' or
 - when using OpenSSL 1.0.1 and later -
 ``+SSLv3 +TLSv1 +TLSv1.1 +TLSv1.2, respectively.

Example
SSLProtocol TLSv1

SSLProxyCACertificateFile Directive

	Description:	File of concatenated PEM-encoded CA Certificates
for Remote Server Auth
	Syntax:	SSLProxyCACertificateFile file-path
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

This directive sets the all-in-one file where you can assemble the
Certificates of Certification Authorities (CA) whose remote servers you deal
with. These are used for Remote Server Authentication. Such a file is simply the
concatenation of the various PEM-encoded Certificate files, in order of
preference. This can be used alternatively and/or additionally to
SSLProxyCACertificatePath.

Example
SSLProxyCACertificateFile /usr/local/apache2/conf/ssl.crt/ca-bundle-remote-server.crt

SSLProxyCACertificatePath Directive

	Description:	Directory of PEM-encoded CA Certificates for
Remote Server Auth
	Syntax:	SSLProxyCACertificatePath directory-path
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

This directive sets the directory where you keep the Certificates of
Certification Authorities (CAs) whose remote servers you deal with. These are used to
verify the remote server certificate on Remote Server Authentication.

The files in this directory have to be PEM-encoded and are accessed through
hash filenames. So usually you can't just place the Certificate files
there: you also have to create symbolic links named
hash-value.N. And you should always make sure this directory
contains the appropriate symbolic links.

Example
SSLProxyCACertificatePath /usr/local/apache2/conf/ssl.crt/

SSLProxyCARevocationCheck Directive

	Description:	Enable CRL-based revocation checking for Remote Server Auth
	Syntax:	SSLProxyCARevocationCheck chain|leaf|none
	Default:	SSLProxyCARevocationCheck none
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

Enables certificate revocation list (CRL) checking for the
remote servers you deal with. At least one of
SSLProxyCARevocationFile
or SSLProxyCARevocationPath must be
configured. When set to chain (recommended setting),
CRL checks are applied to all certificates in the chain, while setting it to
leaf limits the checks to the end-entity cert.

When set to chain or leaf,
CRLs must be available for successful validation

Prior to version 2.3.15, CRL checking in mod_ssl also succeeded when
no CRL(s) were found in any of the locations configured with
SSLProxyCARevocationFile
or SSLProxyCARevocationPath.
With the introduction of this directive, the behavior has been changed:
when checking is enabled, CRLs must be present for the validation
to succeed - otherwise it will fail with an
"unable to get certificate CRL" error.

Example
SSLProxyCARevocationCheck chain

SSLProxyCARevocationFile Directive

	Description:	File of concatenated PEM-encoded CA CRLs for
Remote Server Auth
	Syntax:	SSLProxyCARevocationFile file-path
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

This directive sets the all-in-one file where you can
assemble the Certificate Revocation Lists (CRL) of Certification
Authorities (CA) whose remote servers you deal with. These are used
for Remote Server Authentication. Such a file is simply the concatenation of
the various PEM-encoded CRL files, in order of preference. This can be
used alternatively and/or additionally to SSLProxyCARevocationPath.

Example
SSLProxyCARevocationFile /usr/local/apache2/conf/ssl.crl/ca-bundle-remote-server.crl

SSLProxyCARevocationPath Directive

	Description:	Directory of PEM-encoded CA CRLs for
Remote Server Auth
	Syntax:	SSLProxyCARevocationPath directory-path
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

This directive sets the directory where you keep the Certificate Revocation
Lists (CRL) of Certification Authorities (CAs) whose remote servers you deal with.
These are used to revoke the remote server certificate on Remote Server Authentication.

The files in this directory have to be PEM-encoded and are accessed through
hash filenames. So usually you have not only to place the CRL files there.
Additionally you have to create symbolic links named
hash-value.rN. And you should always make sure this directory
contains the appropriate symbolic links.

Example
SSLProxyCARevocationPath /usr/local/apache2/conf/ssl.crl/

SSLProxyCheckPeerCN Directive

	Description:	Whether to check the remote server certificate's CN field

	Syntax:	SSLProxyCheckPeerCN on|off
	Default:	SSLProxyCheckPeerCN on
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

This directive sets whether the remote server certificate's CN field is
compared against the hostname of the request URL. If both are not equal
a 502 status code (Bad Gateway) is sent.

In 2.4.5 and later, SSLProxyCheckPeerCN has been superseded by
SSLProxyCheckPeerName, and its
setting is only taken into account when
SSLProxyCheckPeerName off is specified at the same time.

Example
SSLProxyCheckPeerCN on

SSLProxyCheckPeerExpire Directive

	Description:	Whether to check if remote server certificate is expired

	Syntax:	SSLProxyCheckPeerExpire on|off
	Default:	SSLProxyCheckPeerExpire on
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

This directive sets whether it is checked if the remote server certificate
is expired or not. If the check fails a 502 status code (Bad Gateway) is
sent.

Example
SSLProxyCheckPeerExpire on

SSLProxyCheckPeerName Directive

	Description:	Configure host name checking for remote server certificates

	Syntax:	SSLProxyCheckPeerName on|off
	Default:	SSLProxyCheckPeerName on
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl
	Compatibility:	Apache HTTP Server 2.4.5 and later

This directive configures host name checking for server certificates
when mod_ssl is acting as an SSL client. The check will
succeed if the host name from the request URI is found in
either the subjectAltName extension or (one of) the CN attribute(s)
in the certificate's subject. If the check fails, the SSL request
is aborted and a 502 status code (Bad Gateway) is returned.
The directive supersedes SSLProxyCheckPeerCN,
which only checks for the expected host name in the first CN attribute.

Wildcard matching is supported in one specific flavor: subjectAltName entries
of type dNSName or CN attributes starting with *. will match
for any DNS name with the same number of labels and the same suffix
(i.e., *.example.org matches for foo.example.org,
but not for foo.bar.example.org).

SSLProxyCipherSuite Directive

	Description:	Cipher Suite available for negotiation in SSL
proxy handshake
	Syntax:	SSLProxyCipherSuite cipher-spec
	Default:	SSLProxyCipherSuite ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:+LOW:+EXP
	Context:	server config, virtual host, directory, .htaccess
	Override:	AuthConfig
	Status:	Extension
	Module:	mod_ssl

Equivalent to SSLCipherSuite, but for the proxy connection.
Please refer to SSLCipherSuite
for additional information.

SSLProxyEngine Directive

	Description:	SSL Proxy Engine Operation Switch
	Syntax:	SSLProxyEngine on|off
	Default:	SSLProxyEngine off
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

This directive toggles the usage of the SSL/TLS Protocol Engine for proxy. This
is usually used inside a <VirtualHost> section to enable SSL/TLS for proxy
usage in a particular virtual host. By default the SSL/TLS Protocol Engine is
disabled for proxy both for the main server and all configured virtual hosts.

Note that the SSLProxyEngine directive should not, in
general, be included in a virtual host that will be acting as a
forward proxy (using <Proxy> or <ProxyRequest> directives.
SSLProxyEngine is not required to enable a forward proxy server to
proxy SSL/TLS requests.

Example
<VirtualHost _default_:443>
 SSLProxyEngine on
 #...
</VirtualHost>

SSLProxyMachineCertificateChainFile Directive

	Description:	File of concatenated PEM-encoded CA certificates to be used by the proxy for choosing a certificate
	Syntax:	SSLProxyMachineCertificateChainFile filename
	Context:	server config
	Override:	Not applicable
	Status:	Extension
	Module:	mod_ssl

This directive sets the all-in-one file where you keep the certificate chain
for all of the client certs in use. This directive will be needed if the
remote server presents a list of CA certificates that are not direct signers
of one of the configured client certificates.

This referenced file is simply the concatenation of the various PEM-encoded
certificate files. Upon startup, each client certificate configured will
be examined and a chain of trust will be constructed.

Security warning

If this directive is enabled, all of the certificates in the file will be
trusted as if they were also in
SSLProxyCACertificateFile.

Example
SSLProxyMachineCertificateChainFile /usr/local/apache2/conf/ssl.crt/proxyCA.pem

SSLProxyMachineCertificateFile Directive

	Description:	File of concatenated PEM-encoded client certificates and keys to be used by the proxy
	Syntax:	SSLProxyMachineCertificateFile filename
	Context:	server config
	Override:	Not applicable
	Status:	Extension
	Module:	mod_ssl

This directive sets the all-in-one file where you keep the certificates and
keys used for authentication of the proxy server to remote servers.

This referenced file is simply the concatenation of the various PEM-encoded
certificate files, in order of preference. Use this directive alternatively
or additionally to SSLProxyMachineCertificatePath.

Currently there is no support for encrypted private keys

Example
SSLProxyMachineCertificateFile /usr/local/apache2/conf/ssl.crt/proxy.pem

SSLProxyMachineCertificatePath Directive

	Description:	Directory of PEM-encoded client certificates and keys to be used by the proxy
	Syntax:	SSLProxyMachineCertificatePath directory
	Context:	server config
	Override:	Not applicable
	Status:	Extension
	Module:	mod_ssl

This directive sets the directory where you keep the certificates and
keys used for authentication of the proxy server to remote servers.

The files in this directory must be PEM-encoded and are accessed through
hash filenames. Additionally, you must create symbolic links named
hash-value.N. And you should always make sure this
directory contains the appropriate symbolic links.

Currently there is no support for encrypted private keys

Example
SSLProxyMachineCertificatePath /usr/local/apache2/conf/proxy.crt/

SSLProxyProtocol Directive

	Description:	Configure usable SSL protocol flavors for proxy usage
	Syntax:	SSLProxyProtocol [+|-]protocol ...
	Default:	SSLProxyProtocol all
	Context:	server config, virtual host
	Override:	Options
	Status:	Extension
	Module:	mod_ssl

This directive can be used to control the SSL protocol flavors mod_ssl should
use when establishing its server environment for proxy . It will only connect
to servers using one of the provided protocols.

Please refer to SSLProtocol
for additional information.

SSLProxyVerify Directive

	Description:	Type of remote server Certificate verification
	Syntax:	SSLProxyVerify level
	Default:	SSLProxyVerify none
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

When a proxy is configured to forward requests to a remote SSL
server, this directive can be used to configure certificate
verification of the remote server.

The following levels are available for level:

	none:
 no remote server Certificate is required at all
	optional:
 the remote server may present a valid Certificate
	require:
 the remote server has to present a valid Certificate
	optional_no_ca:
 the remote server may present a valid Certificate

 but it need not to be (successfully) verifiable.

In practice only levels none and
require are really interesting, because level
optional doesn't work with all servers and level
optional_no_ca is actually against the idea of
authentication (but can be used to establish SSL test pages, etc.)

Example
SSLProxyVerify require

SSLProxyVerifyDepth Directive

	Description:	Maximum depth of CA Certificates in Remote Server
Certificate verification
	Syntax:	SSLProxyVerifyDepth number
	Default:	SSLProxyVerifyDepth 1
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl

This directive sets how deeply mod_ssl should verify before deciding that the
remote server does not have a valid certificate.

The depth actually is the maximum number of intermediate certificate issuers,
i.e. the number of CA certificates which are max allowed to be followed while
verifying the remote server certificate. A depth of 0 means that self-signed
remote server certificates are accepted only, the default depth of 1 means
the remote server certificate can be self-signed or has to be signed by a CA
which is directly known to the server (i.e. the CA's certificate is under
SSLProxyCACertificatePath), etc.

Example
SSLProxyVerifyDepth 10

SSLRandomSeed Directive

	Description:	Pseudo Random Number Generator (PRNG) seeding
source
	Syntax:	SSLRandomSeed context source
[bytes]
	Context:	server config
	Status:	Extension
	Module:	mod_ssl

This configures one or more sources for seeding the Pseudo Random Number
Generator (PRNG) in OpenSSL at startup time (context is
startup) and/or just before a new SSL connection is established
(context is connect). This directive can only be used
in the global server context because the PRNG is a global facility.

The following source variants are available:

	builtin
 This is the always available builtin seeding source. Its usage
 consumes minimum CPU cycles under runtime and hence can be always used
 without drawbacks. The source used for seeding the PRNG contains of the
 current time, the current process id and (when applicable) a randomly
 chosen 1KB extract of the inter-process scoreboard structure of Apache.
 The drawback is that this is not really a strong source and at startup
 time (where the scoreboard is still not available) this source just
 produces a few bytes of entropy. So you should always, at least for the
 startup, use an additional seeding source.

	file:/path/to/source

 This variant uses an external file /path/to/source as the
 source for seeding the PRNG. When bytes is specified, only the
 first bytes number of bytes of the file form the entropy (and
 bytes is given to /path/to/source as the first
 argument). When bytes is not specified the whole file forms the
 entropy (and 0 is given to /path/to/source as
 the first argument). Use this especially at startup time, for instance
 with an available /dev/random and/or
 /dev/urandom devices (which usually exist on modern Unix
 derivatives like FreeBSD and Linux).

 But be careful: Usually /dev/random provides only as
 much entropy data as it actually has, i.e. when you request 512 bytes of
 entropy, but the device currently has only 100 bytes available two things
 can happen: On some platforms you receive only the 100 bytes while on
 other platforms the read blocks until enough bytes are available (which
 can take a long time). Here using an existing /dev/urandom is
 better, because it never blocks and actually gives the amount of requested
 data. The drawback is just that the quality of the received data may not
 be the best.

	exec:/path/to/program

 This variant uses an external executable
 /path/to/program as the source for seeding the
 PRNG. When bytes is specified, only the first
 bytes number of bytes of its stdout contents
 form the entropy. When bytes is not specified, the
 entirety of the data produced on stdout form the
 entropy. Use this only at startup time when you need a very strong
 seeding with the help of an external program (for instance as in
 the example above with the truerand utility you can
 find in the mod_ssl distribution which is based on the AT&T
 truerand library). Using this in the connection context
 slows down the server too dramatically, of course. So usually you
 should avoid using external programs in that context.

	egd:/path/to/egd-socket (Unix only)

 This variant uses the Unix domain socket of the
 external Entropy Gathering Daemon (EGD) (see http://www.lothar.com/tech
 /crypto/) to seed the PRNG. Use this if no random device exists
 on your platform.

Example
SSLRandomSeed startup builtin
SSLRandomSeed startup file:/dev/random
SSLRandomSeed startup file:/dev/urandom 1024
SSLRandomSeed startup exec:/usr/local/bin/truerand 16
SSLRandomSeed connect builtin
SSLRandomSeed connect file:/dev/random
SSLRandomSeed connect file:/dev/urandom 1024

SSLRenegBufferSize Directive

	Description:	Set the size for the SSL renegotiation buffer
	Syntax:	SSLRenegBufferSize bytes
	Default:	SSLRenegBufferSize 131072
	Context:	directory, .htaccess
	Override:	AuthConfig
	Status:	Extension
	Module:	mod_ssl

If an SSL renegotiation is required in per-location context, for
example, any use of SSLVerifyClient in a Directory or
Location block, then mod_ssl must buffer any HTTP
request body into memory until the new SSL handshake can be performed.
This directive can be used to set the amount of memory that will be
used for this buffer.

Note that in many configurations, the client sending the request body
will be untrusted so a denial of service attack by consumption of
memory must be considered when changing this configuration setting.

Example
SSLRenegBufferSize 262144

SSLRequire Directive

	Description:	Allow access only when an arbitrarily complex
boolean expression is true
	Syntax:	SSLRequire expression
	Context:	directory, .htaccess
	Override:	AuthConfig
	Status:	Extension
	Module:	mod_ssl

SSLRequire is deprecated

SSLRequire is deprecated and should in general be replaced
by Require expr. The so called
ap_expr syntax of Require expr is
a superset of the syntax of SSLRequire, with the following
exception:

In SSLRequire, the comparison operators <,
<=, ... are completely equivalent to the operators
lt, le, ... and work in a somewhat peculiar way that
first compares the length of two strings and then the lexical order.
On the other hand, ap_expr has two sets of
comparison operators: The operators <,
<=, ... do lexical string comparison, while the operators
-lt, -le, ... do integer comparison.
For the latter, there are also aliases without the leading dashes:
lt, le, ...

This directive specifies a general access requirement which has to be
fulfilled in order to allow access. It is a very powerful directive because the
requirement specification is an arbitrarily complex boolean expression
containing any number of access checks.

The expression must match the following syntax (given as a BNF
grammar notation):

expr ::= "true" | "false"
 | "!" expr
 | expr "&&" expr
 | expr "||" expr
 | "(" expr ")"
 | comp

comp ::= word "==" word | word "eq" word
 | word "!=" word | word "ne" word
 | word "<" word | word "lt" word
 | word "<=" word | word "le" word
 | word ">" word | word "gt" word
 | word ">=" word | word "ge" word
 | word "in" "{" wordlist "}"
 | word "in" "PeerExtList(" word ")"
 | word "=~" regex
 | word "!~" regex

wordlist ::= word
 | wordlist "," word

word ::= digit
 | cstring
 | variable
 | function

digit ::= [0-9]+
cstring ::= "..."
variable ::= "%{" varname "}"
function ::= funcname "(" funcargs ")"

For varname any of the variables described in Environment Variables can be used. For
funcname the available functions are listed in
the ap_expr documentation.

The expression is parsed into an internal machine
representation when the configuration is loaded, and then evaluated
during request processing. In .htaccess context, the expression is
both parsed and executed each time the .htaccess file is encountered during
request processing.

Example
SSLRequire (%{SSL_CIPHER} !~ m/^(EXP|NULL)-/ \
 and %{SSL_CLIENT_S_DN_O} eq "Snake Oil, Ltd." \
 and %{SSL_CLIENT_S_DN_OU} in {"Staff", "CA", "Dev"} \
 and %{TIME_WDAY} -ge 1 and %{TIME_WDAY} -le 5 \
 and %{TIME_HOUR} -ge 8 and %{TIME_HOUR} -le 20) \
 or %{REMOTE_ADDR} =~ m/^192\.76\.162\.[0-9]+$/

The PeerExtList(object-ID) function expects
to find zero or more instances of the X.509 certificate extension
identified by the given object ID (OID) in the client certificate.
The expression evaluates to true if the left-hand side string matches
exactly against the value of an extension identified with this OID.
(If multiple extensions with the same OID are present, at least one
extension must match).

Example
SSLRequire "foobar" in PeerExtList("1.2.3.4.5.6")

Notes on the PeerExtList function

	The object ID can be specified either as a descriptive
name recognized by the SSL library, such as "nsComment",
or as a numeric OID, such as "1.2.3.4.5.6".

	Expressions with types known to the SSL library are rendered to
a string before comparison. For an extension with a type not
recognized by the SSL library, mod_ssl will parse the value if it is
one of the primitive ASN.1 types UTF8String, IA5String, VisibleString,
or BMPString. For an extension of one of these types, the string
value will be converted to UTF-8 if necessary, then compared against
the left-hand-side expression.

See also

	Environment Variables in Apache HTTP Server,
for additional examples.

	Require expr
	Generic expression syntax in Apache HTTP Server

SSLRequireSSL Directive

	Description:	Deny access when SSL is not used for the
HTTP request
	Syntax:	SSLRequireSSL
	Context:	directory, .htaccess
	Override:	AuthConfig
	Status:	Extension
	Module:	mod_ssl

This directive forbids access unless HTTP over SSL (i.e. HTTPS) is enabled for
the current connection. This is very handy inside the SSL-enabled virtual
host or directories for defending against configuration errors that expose
stuff that should be protected. When this directive is present all requests
are denied which are not using SSL.

Example
SSLRequireSSL

SSLSessionCache Directive

	Description:	Type of the global/inter-process SSL Session
Cache
	Syntax:	SSLSessionCache type
	Default:	SSLSessionCache none
	Context:	server config
	Status:	Extension
	Module:	mod_ssl

This configures the storage type of the global/inter-process SSL Session
Cache. This cache is an optional facility which speeds up parallel request
processing. For requests to the same server process (via HTTP keep-alive),
OpenSSL already caches the SSL session information locally. But because modern
clients request inlined images and other data via parallel requests (usually
up to four parallel requests are common) those requests are served by
different pre-forked server processes. Here an inter-process cache
helps to avoid unnecessary session handshakes.

The following five storage types are currently supported:

	none

 This disables the global/inter-process Session Cache. This
 will incur a noticeable speed penalty and may cause problems if
 using certain browsers, particularly if client certificates are
 enabled. This setting is not recommended.

	nonenotnull

 This disables any global/inter-process Session Cache. However
 it does force OpenSSL to send a non-null session ID to
 accommodate buggy clients that require one.

	dbm:/path/to/datafile

 This makes use of a DBM hashfile on the local disk to
 synchronize the local OpenSSL memory caches of the server
 processes. This session cache may suffer reliability issues under
 high load. To use this, ensure that
 mod_socache_dbm is loaded.

	shmcb:/path/to/datafile[(size)]

 This makes use of a high-performance cyclic buffer
 (approx. size bytes in size) inside a shared memory
 segment in RAM (established via /path/to/datafile) to
 synchronize the local OpenSSL memory caches of the server
 processes. This is the recommended session cache. To use this,
 ensure that mod_socache_shmcb is loaded.

	dc:UNIX:/path/to/socket

 This makes use of the distcache distributed session
 caching libraries. The argument should specify the location of
 the server or proxy to be used using the distcache address syntax;
 for example, UNIX:/path/to/socket specifies a UNIX
 domain socket (typically a local dc_client proxy);
 IP:server.example.com:9001 specifies an IP
 address. To use this, ensure that
 mod_socache_dc is loaded.

Examples
SSLSessionCache dbm:/usr/local/apache/logs/ssl_gcache_data
SSLSessionCache shmcb:/usr/local/apache/logs/ssl_gcache_data(512000)

The ssl-cache mutex is used to serialize access to
the session cache to prevent corruption. This mutex can be configured
using the Mutex directive.

SSLSessionCacheTimeout Directive

	Description:	Number of seconds before an SSL session expires
in the Session Cache
	Syntax:	SSLSessionCacheTimeout seconds
	Default:	SSLSessionCacheTimeout 300
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl
	Compatibility:	Applies also to RFC 5077 TLS session resumption in Apache 2.4.10 and later

This directive sets the timeout in seconds for the information stored in the
global/inter-process SSL Session Cache, the OpenSSL internal memory cache and
for sessions resumed by TLS session resumption (RFC 5077).
It can be set as low as 15 for testing, but should be set to higher
values like 300 in real life.

Example
SSLSessionCacheTimeout 600

SSLSessionTicketKeyFile Directive

	Description:	Persistent encryption/decryption key for TLS session tickets
	Syntax:	SSLSessionTicketKeyFile file-path
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl
	Compatibility:	Available in httpd 2.4.0 and later, if using OpenSSL 0.9.8h or later

Optionally configures a secret key for encrypting and decrypting
TLS session tickets, as defined in
RFC 5077.
Primarily suitable for clustered environments where TLS sessions information
should be shared between multiple nodes. For single-instance httpd setups,
it is recommended to not configure a ticket key file, but to
rely on (random) keys generated by mod_ssl at startup, instead.

The ticket key file must contain 48 bytes of random data,
preferrably created from a high-entropy source. On a Unix-based system,
a ticket key file can be created as follows:

dd if=/dev/random of=/path/to/file.tkey bs=1 count=48

Ticket keys should be rotated (replaced) on a frequent basis,
as this is the only way to invalidate an existing session ticket -
OpenSSL currently doesn't allow to specify a limit for ticket lifetimes.

The ticket key file contains sensitive keying material and should
be protected with file permissions similar to those used for
SSLCertificateKeyFile.

SSLSRPUnknownUserSeed Directive

	Description:	SRP unknown user seed
	Syntax:	SSLSRPUnknownUserSeed secret-string
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl
	Compatibility:	Available in httpd 2.4.4 and later, if using OpenSSL 1.0.1 or
later

This directive sets the seed used to fake SRP user parameters for unknown
users, to avoid leaking whether a given user exists. Specify a secret
string. If this directive is not used, then Apache will return the
UNKNOWN_PSK_IDENTITY alert to clients who specify an unknown username.

Example

SSLSRPUnknownUserSeed "secret"

SSLSRPVerifierFile Directive

	Description:	Path to SRP verifier file
	Syntax:	SSLSRPVerifierFile file-path
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl
	Compatibility:	Available in httpd 2.4.4 and later, if using OpenSSL 1.0.1 or
later

This directive enables TLS-SRP and sets the path to the OpenSSL SRP (Secure
Remote Password) verifier file containing TLS-SRP usernames, verifiers, salts,
and group parameters.

Example

SSLSRPVerifierFile "/path/to/file.srpv"

The verifier file can be created with the openssl command line
utility:

Creating the SRP verifier file

openssl srp -srpvfile passwd.srpv -userinfo "some info" -add username

 The value given with the optional -userinfo parameter is
avalable in the SSL_SRP_USERINFO request environment variable.

SSLStaplingCache Directive

	Description:	Configures the OCSP stapling cache
	Syntax:	SSLStaplingCache type
	Context:	server config
	Status:	Extension
	Module:	mod_ssl
	Compatibility:	Available if using OpenSSL 0.9.8h or later

Configures the cache used to store OCSP responses which get included
in the TLS handshake if SSLUseStapling
is enabled. Configuration of a cache is mandatory for OCSP stapling.
With the exception of none and nonenotnull,
the same storage types are supported as with
SSLSessionCache.

The ssl-stapling mutex is used to serialize access to the
OCSP stapling cache to prevent corruption. This mutex can be configured
using the Mutex directive.

SSLStaplingErrorCacheTimeout Directive

	Description:	Number of seconds before expiring invalid responses in the OCSP stapling cache
	Syntax:	SSLStaplingErrorCacheTimeout seconds
	Default:	SSLStaplingErrorCacheTimeout 600
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl
	Compatibility:	Available if using OpenSSL 0.9.8h or later

Sets the timeout in seconds before invalid responses
in the OCSP stapling cache (configured through SSLStaplingCache) will expire.
To set the cache timeout for valid responses, see
SSLStaplingStandardCacheTimeout.

SSLStaplingFakeTryLater Directive

	Description:	Synthesize "tryLater" responses for failed OCSP stapling queries
	Syntax:	SSLStaplingFakeTryLater on|off
	Default:	SSLStaplingFakeTryLater on
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl
	Compatibility:	Available if using OpenSSL 0.9.8h or later

When enabled and a query to an OCSP responder for stapling
purposes fails, mod_ssl will synthesize a "tryLater" response for the
client. Only effective if SSLStaplingReturnResponderErrors
is also enabled.

SSLStaplingForceURL Directive

	Description:	Override the OCSP responder URI specified in the certificate's AIA extension
	Syntax:	SSLStaplingForceURL uri
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl
	Compatibility:	Available if using OpenSSL 0.9.8h or later

This directive overrides the URI of an OCSP responder as obtained from
the authorityInfoAccess (AIA) extension of the certificate.
One potential use is when a proxy is used for retrieving OCSP queries.

SSLStaplingResponderTimeout Directive

	Description:	Timeout for OCSP stapling queries
	Syntax:	SSLStaplingResponderTimeout seconds
	Default:	SSLStaplingResponderTimeout 10
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl
	Compatibility:	Available if using OpenSSL 0.9.8h or later

This option sets the timeout for queries to OCSP responders when
SSLUseStapling is enabled
and mod_ssl is querying a responder for OCSP stapling purposes.

SSLStaplingResponseMaxAge Directive

	Description:	Maximum allowable age for OCSP stapling responses
	Syntax:	SSLStaplingResponseMaxAge seconds
	Default:	SSLStaplingResponseMaxAge -1
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl
	Compatibility:	Available if using OpenSSL 0.9.8h or later

This option sets the maximum allowable age ("freshness") when
considering OCSP responses for stapling purposes, i.e. when
SSLUseStapling is turned on.
The default value (-1) does not enforce a maximum age,
which means that OCSP responses are considered valid as long as their
nextUpdate field is in the future.

SSLStaplingResponseTimeSkew Directive

	Description:	Maximum allowable time skew for OCSP stapling response validation
	Syntax:	SSLStaplingResponseTimeSkew seconds
	Default:	SSLStaplingResponseTimeSkew 300
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl
	Compatibility:	Available if using OpenSSL 0.9.8h or later

This option sets the maximum allowable time skew when mod_ssl checks the
thisUpdate and nextUpdate fields of OCSP responses
which get included in the TLS handshake (OCSP stapling). Only applicable
if SSLUseStapling is turned on.

SSLStaplingReturnResponderErrors Directive

	Description:	Pass stapling related OCSP errors on to client
	Syntax:	SSLStaplingReturnResponderErrors on|off
	Default:	SSLStaplingReturnResponderErrors on
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl
	Compatibility:	Available if using OpenSSL 0.9.8h or later

When enabled, mod_ssl will pass responses from unsuccessful
stapling related OCSP queries (such as status errors, expired responses etc.)
on to the client. If set to off, no stapled responses
for failed queries will be included in the TLS handshake.

SSLStaplingStandardCacheTimeout Directive

	Description:	Number of seconds before expiring responses in the OCSP stapling cache
	Syntax:	SSLStaplingStandardCacheTimeout seconds
	Default:	SSLStaplingStandardCacheTimeout 3600
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl
	Compatibility:	Available if using OpenSSL 0.9.8h or later

Sets the timeout in seconds before responses in the OCSP stapling cache
(configured through SSLStaplingCache)
will expire. This directive applies to valid responses, while
SSLStaplingErrorCacheTimeout is
used for controlling the timeout for invalid/unavailable responses.

SSLStrictSNIVHostCheck Directive

	Description:	Whether to allow non-SNI clients to access a name-based virtual
host.

	Syntax:	SSLStrictSNIVHostCheck on|off
	Default:	SSLStrictSNIVHostCheck off
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl
	Compatibility:	Available in Apache 2.2.12 and later

This directive sets whether a non-SNI client is allowed to access a name-based
virtual host. If set to on in the default name-based virtual
host, clients that are SNI unaware will not be allowed to access any
virtual host, belonging to this particular IP / port combination.
If set to on in any other virtual host, SNI unaware clients
are not allowed to access this particular virtual host.

This option is only available if httpd was compiled against an SNI capable
version of OpenSSL.

Example
SSLStrictSNIVHostCheck on

SSLUserName Directive

	Description:	Variable name to determine user name
	Syntax:	SSLUserName varname
	Context:	server config, directory, .htaccess
	Override:	AuthConfig
	Status:	Extension
	Module:	mod_ssl

This directive sets the "user" field in the Apache request object.
This is used by lower modules to identify the user with a character
string. In particular, this may cause the environment variable
REMOTE_USER to be set. The varname can be
any of the SSL environment variables.

Note that this directive has no effect if the
FakeBasicAuth option is used (see SSLOptions).

Example
SSLUserName SSL_CLIENT_S_DN_CN

SSLUseStapling Directive

	Description:	Enable stapling of OCSP responses in the TLS handshake
	Syntax:	SSLUseStapling on|off
	Default:	SSLUseStapling off
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_ssl
	Compatibility:	Available if using OpenSSL 0.9.8h or later

This option enables OCSP stapling, as defined by the "Certificate
Status Request" TLS extension specified in RFC 6066. If enabled (and
requested by the client), mod_ssl will include an OCSP response
for its own certificate in the TLS handshake. Configuring an
SSLStaplingCache is a
prerequisite for enabling OCSP stapling.

OCSP stapling relieves the client of querying the OCSP responder
on its own, but it should be noted that with the RFC 6066 specification,
the server's CertificateStatus reply may only include an
OCSP response for a single cert. For server certificates with intermediate
CA certificates in their chain (the typical case nowadays),
stapling in its current implementation therefore only partially achieves the
stated goal of "saving roundtrips and resources" - see also
RFC 6961
(TLS Multiple Certificate Status Extension).

SSLVerifyClient Directive

	Description:	Type of Client Certificate verification
	Syntax:	SSLVerifyClient level
	Default:	SSLVerifyClient none
	Context:	server config, virtual host, directory, .htaccess
	Override:	AuthConfig
	Status:	Extension
	Module:	mod_ssl

This directive sets the Certificate verification level for the Client
Authentication. Notice that this directive can be used both in per-server and
per-directory context. In per-server context it applies to the client
authentication process used in the standard SSL handshake when a connection is
established. In per-directory context it forces a SSL renegotiation with the
reconfigured client verification level after the HTTP request was read but
before the HTTP response is sent.

The following levels are available for level:

	none:
 no client Certificate is required at all
	optional:
 the client may present a valid Certificate
	require:
 the client has to present a valid Certificate
	optional_no_ca:
 the client may present a valid Certificate

 but it need not to be (successfully) verifiable.

In practice only levels none and
require are really interesting, because level
optional doesn't work with all browsers and level
optional_no_ca is actually against the idea of
authentication (but can be used to establish SSL test pages, etc.)

Example
SSLVerifyClient require

SSLVerifyDepth Directive

	Description:	Maximum depth of CA Certificates in Client
Certificate verification
	Syntax:	SSLVerifyDepth number
	Default:	SSLVerifyDepth 1
	Context:	server config, virtual host, directory, .htaccess
	Override:	AuthConfig
	Status:	Extension
	Module:	mod_ssl

This directive sets how deeply mod_ssl should verify before deciding that the
clients don't have a valid certificate. Notice that this directive can be
used both in per-server and per-directory context. In per-server context it
applies to the client authentication process used in the standard SSL
handshake when a connection is established. In per-directory context it forces
a SSL renegotiation with the reconfigured client verification depth after the
HTTP request was read but before the HTTP response is sent.

The depth actually is the maximum number of intermediate certificate issuers,
i.e. the number of CA certificates which are max allowed to be followed while
verifying the client certificate. A depth of 0 means that self-signed client
certificates are accepted only, the default depth of 1 means the client
certificate can be self-signed or has to be signed by a CA which is directly
known to the server (i.e. the CA's certificate is under
SSLCACertificatePath), etc.

Example
SSLVerifyDepth 10

Available Languages: en |
 fr

Comments
Notice:
This is not a Q&A section. Comments placed here should be pointed towards suggestions on improving the documentation or server, and may be removed again by our moderators if they are either implemented or considered invalid/off-topic. Questions on how to manage the Apache HTTP Server should be directed at either our IRC channel, #httpd, on Freenode, or sent to our mailing lists.

Copyright 2014 The Apache Software Foundation.
Licensed under the Apache License, Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap

