

Modules | Directives | FAQ | Glossary | Sitemap

Apache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4 > Modules

Apache Module mod_so

Available Languages: en |
 fr |
 ja |
 ko |
 tr

	Description:	Loading of executable code and
modules into the server at start-up or restart time
	Status:	Extension
	Module Identifier:	so_module
	Source File:	mod_so.c
	Compatibility:	This is a Base module (always included) on
Windows

Summary

 On selected operating systems this module can be used to
 load modules into Apache HTTP Server at runtime via the Dynamic Shared Object (DSO) mechanism,
 rather than requiring a recompilation.

 On Unix, the loaded code typically comes from shared object
 files (usually with .so extension), on Windows
 this may either the .so or .dll
 extension.

 Warning

 Modules built for one major version of the Apache HTTP Server
 will generally not work on another. (e.g. 1.3 vs. 2.0, or 2.0 vs.
 2.2) There are usually API changes between one major version and
 another that require that modules be modified to work with the new
 version.

Directives

	 LoadFile
	 LoadModule

Topics

	 Creating Loadable Modules for Windows

	Comments

Creating Loadable Modules for Windows

 Note

 On Windows, where loadable files typically have a file extension
 of .dll, Apache httpd modules are called
 mod_whatever.so, just as they are on other platforms.
 However, you may encounter third-party modules, such as PHP for
 example, that continue to use the .dll convention.

 While mod_so still loads modules with
 ApacheModuleFoo.dll names, the new naming convention is
 preferred; if you are converting your loadable module for 2.0,
 please fix the name to this 2.0 convention.

 The Apache httpd module API is unchanged between the Unix and
 Windows versions. Many modules will run on Windows with no or
 little change from Unix, although others rely on aspects of the
 Unix architecture which are not present in Windows, and will
 not work.

 When a module does work, it can be added to the server in
 one of two ways. As with Unix, it can be compiled into the
 server. Because Apache httpd for Windows does not have the
 Configure program of Apache httpd for Unix, the module's
 source file must be added to the ApacheCore project file, and
 its symbols must be added to the
 os\win32\modules.c file.

 The second way is to compile the module as a DLL, a shared
 library that can be loaded into the server at runtime, using
 the LoadModule
 directive. These module DLLs can be distributed and run on any
 Apache httpd for Windows installation, without recompilation of the
 server.

 To create a module DLL, a small change is necessary to the
 module's source file: The module record must be exported from
 the DLL (which will be created later; see below). To do this,
 add the AP_MODULE_DECLARE_DATA (defined in the
 Apache httpd header files) to your module's module record definition.
 For example, if your module has:

 module foo_module;

 Replace the above with:

 module AP_MODULE_DECLARE_DATA foo_module;

 Note that this will only be activated on Windows, so the
 module can continue to be used, unchanged, with Unix if needed.
 Also, if you are familiar with .DEF files, you can
 export the module record with that method instead.

 Now, create a DLL containing your module. You will need to
 link this against the libhttpd.lib export library that is
 created when the libhttpd.dll shared library is compiled. You
 may also have to change the compiler settings to ensure that
 the Apache httpd header files are correctly located. You can find
 this library in your server root's modules directory. It is
 best to grab an existing module .dsp file from the tree to
 assure the build environment is configured correctly, or
 alternately compare the compiler and link options to your
 .dsp.

 This should create a DLL version of your module. Now simply
 place it in the modules directory of your server
 root, and use the LoadModule
 directive to load it.

LoadFile Directive

	Description:	Link in the named object file or library
	Syntax:	LoadFile filename [filename] ...
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_so

 The LoadFile directive links in the named object files or
 libraries when the server is started or restarted; this is used
 to load additional code which may be required for some module
 to work. Filename is either an absolute path or
 relative to ServerRoot.

 For example:

 LoadFile libexec/libxmlparse.so

LoadModule Directive

	Description:	Links in the object file or library, and adds to the list
of active modules
	Syntax:	LoadModule module filename
	Context:	server config, virtual host
	Status:	Extension
	Module:	mod_so

 The LoadModule directive links in the object file or library
 filename and adds the module structure named
 module to the list of active modules. Module
 is the name of the external variable of type
 module in the file, and is listed as the Module Identifier
 in the module documentation. Example:

 LoadModule status_module modules/mod_status.so

 loads the named module from the modules subdirectory of the
 ServerRoot.

Available Languages: en |
 fr |
 ja |
 ko |
 tr

Comments
Notice:
This is not a Q&A section. Comments placed here should be pointed towards suggestions on improving the documentation or server, and may be removed again by our moderators if they are either implemented or considered invalid/off-topic. Questions on how to manage the Apache HTTP Server should be directed at either our IRC channel, #httpd, on Freenode, or sent to our mailing lists.

Copyright 2014 The Apache Software Foundation.
Licensed under the Apache License, Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap

