

Modules | Directives | FAQ | Glossary | Sitemap

Apache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4 > Modules

Apache Module mod_lua

Available Languages: en |
 fr

	Description:	Provides Lua hooks into various portions of the httpd
request processing
	Status:	Experimental
	Module Identifier:	lua_module
	Source File:	mod_lua.c
	Compatibility:	2.3 and later

Summary

This module allows the server to be extended with scripts written in the
Lua programming language. The extension points (hooks) available with
mod_lua include many of the hooks available to
natively compiled Apache HTTP Server modules, such as mapping requests to
files, generating dynamic responses, access control, authentication, and
authorization

More information on the Lua programming language can be found at the
the Lua website.

mod_lua is still in experimental state.
Until it is declared stable, usage and behavior may change
at any time, even between stable releases of the 2.4.x series.
Be sure to check the CHANGES file before upgrading.

Warning

This module holds a great deal of power over httpd, which is both a
strength and a potential security risk. It is not recommended
that you use this module on a server that is shared with users you do not
trust, as it can be abused to change the internal workings of httpd.

Directives

	 LuaAuthzProvider
	 LuaCodeCache
	 LuaHookAccessChecker
	 LuaHookAuthChecker
	 LuaHookCheckUserID
	 LuaHookFixups
	 LuaHookInsertFilter
	 LuaHookLog
	 LuaHookMapToStorage
	 LuaHookTranslateName
	 LuaHookTypeChecker
	 LuaInherit
	 LuaInputFilter
	 LuaMapHandler
	 LuaOutputFilter
	 LuaPackageCPath
	 LuaPackagePath
	 LuaQuickHandler
	 LuaRoot
	 LuaScope

Topics

	 Basic Configuration
	 Writing Handlers
	 Writing Authorization Providers
	 Writing Hooks
	 Data Structures
	 Built in functions
	 Logging Functions
	 apache2 Package
	 Modifying contents with Lua filters
	 Database connectivity

	Comments

Basic Configuration

The basic module loading directive is

LoadModule lua_module modules/mod_lua.so

mod_lua provides a handler named lua-script,
which can be used with a SetHandler or
AddHandler directive:

<Files *.lua>
 SetHandler lua-script
</Files>

This will cause mod_lua to handle requests for files
ending in .lua by invoking that file's
handle function.

For more flexibility, see LuaMapHandler.

Writing Handlers

 In the Apache HTTP Server API, the handler is a specific kind of hook
responsible for generating the response. Examples of modules that include a
handler are mod_proxy, mod_cgi,
and mod_status.

mod_lua always looks to invoke a Lua function for the handler, rather than
just evaluating a script body CGI style. A handler function looks
something like this:

example.lua

-- example handler

require "string"

--[[
 This is the default method name for Lua handlers, see the optional
 function-name in the LuaMapHandler directive to choose a different
 entry point.
--]]
function handle(r)
 r.content_type = "text/plain"

 if r.method == 'GET' then
 r:puts("Hello Lua World!\n")
 for k, v in pairs(r:parseargs()) do
 r:puts(string.format("%s: %s\n", k, v))
 end
 elseif r.method == 'POST' then
 r:puts("Hello Lua World!\n")
 for k, v in pairs(r:parsebody()) do
 r:puts(string.format("%s: %s\n", k, v))
 end
 elseif r.method == 'PUT' then
-- use our own Error contents
 r:puts("Unsupported HTTP method " .. r.method)
 r.status = 405
 return apache2.ok
 else
-- use the ErrorDocument
 return 501
 end
 return apache2.OK
end

This handler function just prints out the uri or form encoded
arguments to a plaintext page.

This means (and in fact encourages) that you can have multiple
handlers (or hooks, or filters) in the same script.

Writing Authorization Providers

mod_authz_core provides a high-level interface to
authorization that is much easier to use than using into the relevant
hooks directly. The first argument to the
Require directive gives
the name of the responsible authorization provider. For any
Require line,
mod_authz_core will call the authorization provider
of the given name, passing the rest of the line as parameters. The
provider will then check authorization and pass the result as return
value.

The authz provider is normally called before authentication. If it needs to
know the authenticated user name (or if the user will be authenticated at
all), the provider must return apache2.AUTHZ_DENIED_NO_USER.
This will cause authentication to proceed and the authz provider to be
called a second time.

The following authz provider function takes two arguments, one ip
address and one user name. It will allow access from the given ip address
without authentication, or if the authenticated user matches the second
argument:

authz_provider.lua

require 'apache2'

function authz_check_foo(r, ip, user)
 if r.useragent_ip == ip then
 return apache2.AUTHZ_GRANTED
 elseif r.user == nil then
 return apache2.AUTHZ_DENIED_NO_USER
 elseif r.user == user then
 return apache2.AUTHZ_GRANTED
 else
 return apache2.AUTHZ_DENIED
 end
end

The following configuration registers this function as provider
foo and configures it for URL /:

LuaAuthzProvider foo authz_provider.lua authz_check_foo
<Location />
 Require foo 10.1.2.3 john_doe
</Location>

Writing Hooks

Hook functions are how modules (and Lua scripts) participate in the
processing of requests. Each type of hook exposed by the server exists for
a specific purpose, such as mapping requests to the file system,
performing access control, or setting mime types:

	Hook phase	mod_lua directive	Description
	Quick handler	LuaQuickHandler	This is the first hook that will be called after a request has
 been mapped to a host or virtual host
	Translate name	LuaHookTranslateName	This phase translates the requested URI into a filename on the
 system. Modules such as mod_alias and
 mod_rewrite operate in this phase.
	Map to storage	LuaHookMapToStorage	This phase maps files to their physical, cached or external/proxied storage.
 It can be used by proxy or caching modules
	Check Access	LuaHookAccessChecker	This phase checks whether a client has access to a resource. This
 phase is run before the user is authenticated, so beware.

	Check User ID	LuaHookCheckUserID	This phase it used to check the negotiated user ID
	Check Authorization	LuaHookAuthChecker or
 LuaAuthzProvider	This phase authorizes a user based on the negotiated credentials, such as
 user ID, client certificate etc.

	Check Type	LuaHookTypeChecker	This phase checks the requested file and assigns a content type and
 a handler to it
	Fixups	LuaHookFixups	This is the final "fix anything" phase before the content handlers
 are run. Any last-minute changes to the request should be made here.
	Content handler	fx. .lua files or through LuaMapHandler	This is where the content is handled. Files are read, parsed, some are run,
 and the result is sent to the client
	Logging	LuaHookLog	Once a request has been handled, it enters several logging phases,
 which logs the request in either the error or access log. Mod_lua
 is able to hook into the start of this and control logging output.

Hook functions are passed the request object as their only argument
(except for LuaAuthzProvider, which also gets passed the arguments from
the Require directive).
They can return any value, depending on the hook, but most commonly
they'll return OK, DONE, or DECLINED, which you can write in Lua as
apache2.OK, apache2.DONE, or
apache2.DECLINED, or else an HTTP status code.

translate_name.lua

-- example hook that rewrites the URI to a filesystem path.

require 'apache2'

function translate_name(r)
 if r.uri == "/translate-name" then
 r.filename = r.document_root .. "/find_me.txt"
 return apache2.OK
 end
 -- we don't care about this URL, give another module a chance
 return apache2.DECLINED
end

translate_name2.lua

--[[example hook that rewrites one URI to another URI. It returns a
 apache2.DECLINED to give other URL mappers a chance to work on the
 substitution, including the core translate_name hook which maps based
 on the DocumentRoot.

 Note: Use the early/late flags in the directive to make it run before
 or after mod_alias.
--]]

require 'apache2'

function translate_name(r)
 if r.uri == "/translate-name" then
 r.uri = "/find_me.txt"
 return apache2.DECLINED
 end
 return apache2.DECLINED
end

Data Structures

	request_rec
	
 The request_rec is mapped in as a userdata. It has a metatable
 which lets you do useful things with it. For the most part it
 has the same fields as the request_rec struct, many of which are writable as
 well as readable. (The table fields' content can be changed, but the
 fields themselves cannot be set to different tables.)

 	Name	Lua type	Writable	Description
	allowoverrides	string	no	The AllowOverride options applied to the current request.
	ap_auth_type	string	no	If an authentication check was made, this is set to the type
 of authentication (f.x. basic)
	args	string	yes	The query string arguments extracted from the request
 (f.x. foo=bar&name=johnsmith)
	assbackwards	boolean	no	Set to true if this is an HTTP/0.9 style request
 (e.g. GET /foo (with no headers))
	auth_name	string	no	The realm name used for authorization (if applicable).
	banner	string	no	The server banner, f.x. Apache HTTP Server/2.4.3 openssl/0.9.8c
	basic_auth_pw	string	no	The basic auth password sent with this request, if any
	canonical_filename	string	no	The canonical filename of the request
	content_encoding	string	no	The content encoding of the current request
	content_type	string	yes	The content type of the current request, as determined in the
 type_check phase (f.x. image/gif or text/html)
	context_prefix	string	no	
	context_document_root	string	no	
	document_root	string	no	The document root of the host
	err_headers_out	table	no	MIME header environment for the response, printed even on errors and
 persist across internal redirects
	filename	string	yes	The file name that the request maps to, f.x. /www/example.com/foo.txt. This can be
 changed in the translate-name or map-to-storage phases of a request to allow the
 default handler (or script handlers) to serve a different file than what was requested.
	handler	string	yes	The name of the handler that should serve this request, f.x.
 lua-script if it is to be served by mod_lua. This is typically set by the
 AddHandler or SetHandler
 directives, but could also be set via mod_lua to allow another handler to serve up a specific request
 that would otherwise not be served by it.

	headers_in	table	yes	MIME header environment from the request. This contains headers such as Host,
 User-Agent, Referer and so on.
	headers_out	table	yes	MIME header environment for the response.
	hostname	string	no	The host name, as set by the Host: header or by a full URI.
	is_https	boolean	no	Whether or not this request is done via HTTPS
	is_initial_req	boolean	no	Whether this request is the initial request or a sub-request
	limit_req_body	number	no	The size limit of the request body for this request, or 0 if no limit.
	log_id	string	no	The ID to identify request in access and error log.
	method	string	no	The request method, f.x. GET or POST.
	notes	table	yes	A list of notes that can be passed on from one module to another.
	options	string	no	The Options directive applied to the current request.
	path_info	string	no	The PATH_INFO extracted from this request.
	port	number	no	The server port used by the request.
	protocol	string	no	The protocol used, f.x. HTTP/1.1
	proxyreq	string	yes	Denotes whether this is a proxy request or not. This value is generally set in
 the post_read_request/translate_name phase of a request.
	range	string	no	The contents of the Range: header.
	remaining	number	no	The number of bytes remaining to be read from the request body.
	server_built	string	no	The time the server executable was built.
	server_name	string	no	The server name for this request.
	some_auth_required	boolean	no	Whether some authorization is/was required for this request.
	subprocess_env	table	yes	The environment variables set for this request.
	started	number	no	The time the server was (re)started, in seconds since the epoch (Jan 1st, 1970)
	status	number	yes	The (current) HTTP return code for this request, f.x. 200 or 404.
	the_request	string	no	The request string as sent by the client, f.x. GET /foo/bar HTTP/1.1.
	unparsed_uri	string	no	The unparsed URI of the request
	uri	string	yes	The URI after it has been parsed by httpd
	user	string	yes	If an authentication check has been made, this is set to the name of the authenticated user.
	useragent_ip	string	no	The IP of the user agent making the request

Built in functions

The request_rec object has (at least) the following methods:

r:flush() -- flushes the output buffer.
 -- Returns true if the flush was successful, false otherwise.

while we_have_stuff_to_send do
 r:puts("Bla bla bla\n") -- print something to client
 r:flush() -- flush the buffer (send to client)
 r.usleep(500000) -- fake processing time for 0.5 sec. and repeat
end

r:addoutputfilter(name|function) -- add an output filter:

r:addoutputfilter("fooFilter") -- add the fooFilter to the output stream

r:sendfile(filename) -- sends an entire file to the client, using sendfile if supported by the current platform:

if use_sendfile_thing then
 r:sendfile("/var/www/large_file.img")
end

r:parseargs() -- returns two tables; one standard key/value table for regular GET data,
 -- and one for multi-value data (fx. foo=1&foo=2&foo=3):

local GET, GETMULTI = r:parseargs()
r:puts("Your name is: " .. GET['name'] or "Unknown")

r:parsebody([sizeLimit]) -- parse the request body as a POST and return two lua tables,
 -- just like r:parseargs().
 -- An optional number may be passed to specify the maximum number
 -- of bytes to parse. Default is 8192 bytes:

local POST, POSTMULTI = r:parsebody(1024*1024)
r:puts("Your name is: " .. POST['name'] or "Unknown")

r:puts("hello", " world", "!") -- print to response body, self explanatory

r:write("a single string") -- print to response body, self explanatory

r:escape_html("<html>test</html>") -- Escapes HTML code and returns the escaped result

r:base64_encode(string) -- Encodes a string using the Base64 encoding standard:

local encoded = r:base64_encode("This is a test") -- returns VGhpcyBpcyBhIHRlc3Q=

r:base64_decode(string) -- Decodes a Base64-encoded string:

local decoded = r:base64_decode("VGhpcyBpcyBhIHRlc3Q=") -- returns 'This is a test'

r:md5(string) -- Calculates and returns the MD5 digest of a string (binary safe):

local hash = r:md5("This is a test") -- returns ce114e4501d2f4e2dcea3e17b546f339

r:sha1(string) -- Calculates and returns the SHA1 digest of a string (binary safe):

local hash = r:sha1("This is a test") -- returns a54d88e06612d820bc3be72877c74f257b561b19

r:escape(string) -- URL-Escapes a string:

local url = "http://foo.bar/1 2 3 & 4 + 5"
local escaped = r:escape(url) -- returns 'http%3a%2f%2ffoo.bar%2f1+2+3+%26+4+%2b+5'

r:unescape(string) -- Unescapes an URL-escaped string:

local url = "http%3a%2f%2ffoo.bar%2f1+2+3+%26+4+%2b+5"
local unescaped = r:unescape(url) -- returns 'http://foo.bar/1 2 3 & 4 + 5'

r:construct_url(string) -- Constructs an URL from an URI

local url = r:construct_url(r.uri)

r.mpm_query(number) -- Queries the server for MPM information using ap_mpm_query:

local mpm = r.mpm_query(14)
if mpm == 1 then
 r:puts("This server uses the Event MPM")
end

r:expr(string) -- Evaluates an expr string.

if r:expr("%{HTTP_HOST} =~ /^www/") then
 r:puts("This host name starts with www")
end

r:scoreboard_process(a) -- Queries the server for information about the process at position a:

local process = r:scoreboard_process(1)
r:puts("Server 1 has PID " .. process.pid)

r:scoreboard_worker(a, b) -- Queries for information about the worker thread, b, in process a:

local thread = r:scoreboard_worker(1, 1)
r:puts("Server 1's thread 1 has thread ID " .. thread.tid .. " and is in " .. thread.status .. " status")

r:clock() -- Returns the current time with microsecond precision

r:requestbody(filename) -- Reads and returns the request body of a request.
 -- If 'filename' is specified, it instead saves the
 -- contents to that file:

local input = r:requestbody()
r:puts("You sent the following request body to me:\n")
r:puts(input)

r:add_input_filter(filter_name) -- Adds 'filter_name' as an input filter

r.module_info(module_name) -- Queries the server for information about a module

local mod = r.module_info("mod_lua.c")
if mod then
 for k, v in pairs(mod.commands) do
 r:puts(("%s: %s\n"):format(k,v)) -- print out all directives accepted by this module
 end
end

r:loaded_modules() -- Returns a list of modules loaded by httpd:

for k, module in pairs(r:loaded_modules()) do
 r:puts("I have loaded module " .. module .. "\n")
end

r:runtime_dir_relative(filename) -- Compute the name of a run-time file (e.g., shared memory "file")
 -- relative to the appropriate run-time directory.

r:server_info() -- Returns a table containing server information, such as
 -- the name of the httpd executable file, mpm used etc.

r:set_document_root(file_path) -- Sets the document root for the request to file_path

r:set_context_info(prefix, docroot) -- Sets the context prefix and context document root for a request

r:os_escape_path(file_path) -- Converts an OS path to a URL in an OS dependent way

r:escape_logitem(string) -- Escapes a string for logging

r.strcmp_match(string, pattern) -- Checks if 'string' matches 'pattern' using strcmp_match (globs).
 -- fx. whether 'www.example.com' matches '*.example.com':

local match = r.strcmp_match("foobar.com", "foo*.com")
if match then
 r:puts("foobar.com matches foo*.com")
end

r:set_keepalive() -- Sets the keepalive status for a request. Returns true if possible, false otherwise.

r:make_etag() -- Constructs and returns the etag for the current request.

r:send_interim_response(clear) -- Sends an interim (1xx) response to the client.
 -- if 'clear' is true, available headers will be sent and cleared.

r:custom_response(status_code, string) -- Construct and set a custom response for a given status code.
 -- This works much like the ErrorDocument directive:

r:custom_response(404, "Baleted!")

r.exists_config_define(string) -- Checks whether a configuration definition exists or not:

if r.exists_config_define("FOO") then
 r:puts("httpd was probably run with -DFOO, or it was defined in the configuration")
end

r:state_query(string) -- Queries the server for state information

r:stat(filename [,wanted]) -- Runs stat() on a file, and returns a table with file information:

local info = r:stat("/var/www/foo.txt")
if info then
 r:puts("This file exists and was last modified at: " .. info.modified)
end

r:regex(string, pattern [,flags]) -- Runs a regular expression match on a string, returning captures if matched:

local matches = r:regex("foo bar baz", [[foo (\w+) (\S*)]])
if matches then
 r:puts("The regex matched, and the last word captured ($2) was: " .. matches[2])
end

-- Example ignoring case sensitivity:
local matches = r:regex("FOO bar BAz", [[(foo) bar]], 1)

-- Flags can be a bitwise combination of:
-- 0x01: Ignore case
-- 0x02: Multiline search

r.usleep(number_of_microseconds) -- Puts the script to sleep for a given number of microseconds.

r:dbacquire(dbType[, dbParams]) -- Acquires a connection to a database and returns a database class.
 -- See 'Database connectivity' for details.

r:ivm_set("key", value) -- Set an Inter-VM variable to hold a specific value.
 -- These values persist even though the VM is gone or not being used,
 -- and so should only be used if MaxConnectionsPerChild is > 0
 -- Values can be numbers, strings and booleans, and are stored on a
 -- per process basis (so they won't do much good with a prefork mpm)

r:ivm_get("key") -- Fetches a variable set by ivm_set. Returns the contents of the variable
 -- if it exists or nil if no such variable exists.

-- An example getter/setter that saves a global variable outside the VM:
function handle(r)
 -- First VM to call this will get no value, and will have to create it
 local foo = r:ivm_get("cached_data")
 if not foo then
 foo = do_some_calcs() -- fake some return value
 r:ivm_set("cached_data", foo) -- set it globally
 end
 r:puts("Cached data is: ", foo)
end

r:htpassword(string [,algorithm [,cost]]) -- Creates a password hash from a string.
 -- algorithm: 0 = APMD5 (default), 1 = SHA, 2 = BCRYPT, 3 = CRYPT.
 -- cost: only valid with BCRYPT algorithm (default = 5).

r:mkdir(dir [,mode]) -- Creates a directory and sets mode to optional mode paramter.

r:mkrdir(dir [,mode]) -- Creates directories recursive and sets mode to optional mode paramter.

r:rmdir(dir) -- Removes a directory.

r:touch(file [,mtime]) -- Sets the file modification time to current time or to optional mtime msec value.

r:get_direntries(dir) -- Returns a table with all directory entries.

function handle(r)
 local dir = r.context_document_root
 for _, f in ipairs(r:get_direntries(dir)) do
 local info = r:stat(dir .. "/" .. f)
 if info then
 local mtime = os.date(fmt, info.mtime / 1000000)
 local ftype = (info.filetype == 2) and "[dir] " or "[file]"
 r:puts(("%s %s %10i %s\n"):format(ftype, mtime, info.size, f))
 end
 end
end

r.date_parse_rfc(string) -- Parses a date/time string and returns seconds since epoche.

r:getcookie(key) -- Gets a HTTP cookie

r:setcookie{
 key = [key],
 value = [value],
 expires = [expiry],
 secure = [boolean],
 httponly = [boolean],
 path = [path],
 domain = [domain]
} -- Sets a HTTP cookie, for instance:

r:setcookie{
 key = "cookie1",
 value = "HDHfa9eyffh396rt",
 expires = os.time() + 86400,
 secure = true
}

r:wsupgrade() -- Upgrades a connection to WebSockets if possible (and requested):
if r:wsupgrade() then -- if we can upgrade:
 r:wswrite("Welcome to websockets!") -- write something to the client
 r:wsclose() -- goodbye!
end

r:wsread() -- Reads a WebSocket frame from a WebSocket upgraded connection (see above):

local line, isFinal = r:wsread() -- isFinal denotes whether this is the final frame.
 -- If it isn't, then more frames can be read
r:wswrite("You wrote: " .. line)

r:wswrite(line) -- Writes a frame to a WebSocket client:
r:wswrite("Hello, world!")

r:wsclose() -- Closes a WebSocket request and terminates it for httpd:

if r:wsupgrade() then
 r:wswrite("Write something: ")
 local line = r:wsread() or "nothing"
 r:wswrite("You wrote: " .. line);
 r:wswrite("Goodbye!")
 r:wsclose()
end

Logging Functions

 -- examples of logging messages

 r:trace1("This is a trace log message") -- trace1 through trace8 can be used

 r:debug("This is a debug log message")

 r:info("This is an info log message")

 r:notice("This is a notice log message")

 r:warn("This is a warn log message")

 r:err("This is an err log message")

 r:alert("This is an alert log message")

 r:crit("This is a crit log message")

 r:emerg("This is an emerg log message")

apache2 Package

A package named apache2 is available with (at least) the following contents.

	apache2.OK
	internal constant OK. Handlers should return this if they've
 handled the request.
	apache2.DECLINED
	internal constant DECLINED. Handlers should return this if
 they are not going to handle the request.
	apache2.DONE
	internal constant DONE.
	apache2.version
	Apache HTTP server version string
	apache2.HTTP_MOVED_TEMPORARILY
	HTTP status code
	apache2.PROXYREQ_NONE, apache2.PROXYREQ_PROXY, apache2.PROXYREQ_REVERSE, apache2.PROXYREQ_RESPONSE
	internal constants used by mod_proxy
	apache2.AUTHZ_DENIED, apache2.AUTHZ_GRANTED, apache2.AUTHZ_NEUTRAL, apache2.AUTHZ_GENERAL_ERROR, apache2.AUTHZ_DENIED_NO_USER
	internal constants used by mod_authz_core

(Other HTTP status codes are not yet implemented.)

Modifying contents with Lua filters

 Filter functions implemented via LuaInputFilter
 or LuaOutputFilter are designed as
 three-stage non-blocking functions using coroutines to suspend and resume a
 function as buckets are sent down the filter chain. The core structure of
 such a function is:

 function filter(r)
 -- Our first yield is to signal that we are ready to receive buckets.
 -- Before this yield, we can set up our environment, check for conditions,
 -- and, if we deem it necessary, decline filtering a request alltogether:
 if something_bad then
 return -- This would skip this filter.
 end
 -- Regardless of whether we have data to prepend, a yield MUST be called here.
 -- Note that only output filters can prepend data. Input filters must use the
 -- final stage to append data to the content.
 coroutine.yield([optional header to be prepended to the content])

 -- After we have yielded, buckets will be sent to us, one by one, and we can
 -- do whatever we want with them and then pass on the result.
 -- Buckets are stored in the global variable 'bucket', so we create a loop
 -- that checks if 'bucket' is not nil:
 while bucket ~= nil do
 local output = mangle(bucket) -- Do some stuff to the content
 coroutine.yield(output) -- Return our new content to the filter chain
 end

 -- Once the buckets are gone, 'bucket' is set to nil, which will exit the
 -- loop and land us here. Anything extra we want to append to the content
 -- can be done by doing a final yield here. Both input and output filters
 -- can append data to the content in this phase.
 coroutine.yield([optional footer to be appended to the content])
end

Database connectivity

 Mod_lua implements a simple database feature for querying and running commands
 on the most popular database engines (mySQL, PostgreSQL, FreeTDS, ODBC, SQLite, Oracle)
 as well as mod_dbd.

 The example below shows how to acquire a database handle and return information from a table:

 function handle(r)
 -- Acquire a database handle
 local database, err = r:dbacquire("mysql", "server=localhost,user=someuser,pass=somepass,dbname=mydb")
 if not err then
 -- Select some information from it
 local results, err = database:select(r, "SELECT `name`, `age` FROM `people` WHERE 1")
 if not err then
 local rows = results(0) -- fetch all rows synchronously
 for k, row in pairs(rows) do
 r:puts(string.format("Name: %s, Age: %s
", row[1], row[2]))
 end
 else
 r:puts("Database query error: " .. err)
 end
 database:close()
 else
 r:puts("Could not connect to the database: " .. err)
 end
end

 To utilize mod_dbd, specify mod_dbd
 as the database type, or leave the field blank:

 local database = r:dbacquire("mod_dbd")

 Database object and contained functions

 The database object returned by dbacquire has the following methods:

 Normal select and query from a database:

 -- Run a statement and return the number of rows affected:
local affected, errmsg = database:query(r, "DELETE FROM `tbl` WHERE 1")

-- Run a statement and return a result set that can be used synchronously or async:
local result, errmsg = database:select(r, "SELECT * FROM `people` WHERE 1")

 Using prepared statements (recommended):

 -- Create and run a prepared statement:
local statement, errmsg = database:prepare(r, "DELETE FROM `tbl` WHERE `age` > %u")
if not errmsg then
 local result, errmsg = statement:query(20) -- run the statement with age > 20
end

-- Fetch a prepared statement from a DBDPrepareSQL directive:
local statement, errmsg = database:prepared(r, "someTag")
if not errmsg then
 local result, errmsg = statement:select("John Doe", 123) -- inject the values "John Doe" and 123 into the statement
end

 Escaping values, closing databases etc:

 -- Escape a value for use in a statement:
local escaped = database:escape(r, [["'|blabla]])

-- Close a database connection and free up handles:
database:close()

-- Check whether a database connection is up and running:
local connected = database:active()

 Working with result sets

 The result set returned by db:select or by the prepared statement functions
 created through db:prepare can be used to
 fetch rows synchronously or asynchronously, depending on the row number specified:

 result(0) fetches all rows in a synchronous manner, returning a table of rows.

 result(-1) fetches the next available row in the set, asynchronously.

 result(N) fetches row number N, asynchronously:

 -- fetch a result set using a regular query:
local result, err = db:select(r, "SELECT * FROM `tbl` WHERE 1")

local rows = result(0) -- Fetch ALL rows synchronously
local row = result(-1) -- Fetch the next available row, asynchronously
local row = result(1234) -- Fetch row number 1234, asynchronously
local row = result(-1, true) -- Fetch the next available row, using row names as key indexes.

 One can construct a function that returns an iterative function to iterate over all rows
 in a synchronous or asynchronous way, depending on the async argument:

 function rows(resultset, async)
 local a = 0
 local function getnext()
 a = a + 1
 local row = resultset(-1)
 return row and a or nil, row
 end
 if not async then
 return pairs(resultset(0))
 else
 return getnext, self
 end
end

local statement, err = db:prepare(r, "SELECT * FROM `tbl` WHERE `age` > %u")
if not err then
 -- fetch rows asynchronously:
 local result, err = statement:select(20)
 if not err then
 for index, row in rows(result, true) do

 end
 end

 -- fetch rows synchronously:
 local result, err = statement:select(20)
 if not err then
 for index, row in rows(result, false) do

 end
 end
end

 Closing a database connection

 Database handles should be closed using database:close() when they are no longer
 needed. If you do not close them manually, they will eventually be garbage collected and
 closed by mod_lua, but you may end up having too many unused connections to the database
 if you leave the closing up to mod_lua. Essentially, the following two measures are
 the same:

 -- Method 1: Manually close a handle
local database = r:dbacquire("mod_dbd")
database:close() -- All done

-- Method 2: Letting the garbage collector close it
local database = r:dbacquire("mod_dbd")
database = nil -- throw away the reference
collectgarbage() -- close the handle via GC

 Precautions when working with databases

 Although the standard query and run functions are freely
 available, it is recommended that you use prepared statements whenever possible, to
 both optimize performance (if your db handle lives on for a long time) and to minimize
 the risk of SQL injection attacks. run and query should only
 be used when there are no variables inserted into a statement (a static statement).
 When using dynamic statements, use db:prepare or db:prepared.

LuaAuthzProvider Directive

	Description:	Plug an authorization provider function into mod_authz_core

	Syntax:	LuaAuthzProvider provider_name /path/to/lua/script.lua function_name
	Context:	server config
	Status:	Experimental
	Module:	mod_lua
	Compatibility:	2.4.3 and later

After a lua function has been registered as authorization provider, it can be used
with the Require directive:

LuaRoot /usr/local/apache2/lua
LuaAuthzProvider foo authz.lua authz_check_foo
<Location />
 Require foo johndoe
</Location>

require "apache2"
function authz_check_foo(r, who)
 if r.user ~= who then return apache2.AUTHZ_DENIED
 return apache2.AUTHZ_GRANTED
end

LuaCodeCache Directive

	Description:	Configure the compiled code cache.
	Syntax:	LuaCodeCache stat|forever|never
	Default:	LuaCodeCache stat
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Experimental
	Module:	mod_lua

 Specify the behavior of the in-memory code cache. The default
 is stat, which stats the top level script (not any included
 ones) each time that file is needed, and reloads it if the
 modified time indicates it is newer than the one it has
 already loaded. The other values cause it to keep the file
 cached forever (don't stat and replace) or to never cache the
 file.

 In general stat or forever is good for production, and stat or never
 for development.

 Examples:
LuaCodeCache stat
LuaCodeCache forever
LuaCodeCache never

LuaHookAccessChecker Directive

	Description:	Provide a hook for the access_checker phase of request processing
	Syntax:	LuaHookAccessChecker /path/to/lua/script.lua hook_function_name [early|late]
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Experimental
	Module:	mod_lua
	Compatibility:	The optional third argument is supported in 2.3.15 and later

Add your hook to the access_checker phase. An access checker
hook function usually returns OK, DECLINED, or HTTP_FORBIDDEN.

 Ordering
The optional arguments "early" or "late"
 control when this script runs relative to other modules.

LuaHookAuthChecker Directive

	Description:	Provide a hook for the auth_checker phase of request processing
	Syntax:	LuaHookAuthChecker /path/to/lua/script.lua hook_function_name [early|late]
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Experimental
	Module:	mod_lua
	Compatibility:	The optional third argument is supported in 2.3.15 and later

Invoke a lua function in the auth_checker phase of processing
a request. This can be used to implement arbitrary authentication
and authorization checking. A very simple example:

require 'apache2'

-- fake authcheck hook
-- If request has no auth info, set the response header and
-- return a 401 to ask the browser for basic auth info.
-- If request has auth info, don't actually look at it, just
-- pretend we got userid 'foo' and validated it.
-- Then check if the userid is 'foo' and accept the request.
function authcheck_hook(r)

 -- look for auth info
 auth = r.headers_in['Authorization']
 if auth ~= nil then
 -- fake the user
 r.user = 'foo'
 end

 if r.user == nil then
 r:debug("authcheck: user is nil, returning 401")
 r.err_headers_out['WWW-Authenticate'] = 'Basic realm="WallyWorld"'
 return 401
 elseif r.user == "foo" then
 r:debug('user foo: OK')
 else
 r:debug("authcheck: user='" .. r.user .. "'")
 r.err_headers_out['WWW-Authenticate'] = 'Basic realm="WallyWorld"'
 return 401
 end
 return apache2.OK
end

 Ordering
The optional arguments "early" or "late"
 control when this script runs relative to other modules.

LuaHookCheckUserID Directive

	Description:	Provide a hook for the check_user_id phase of request processing
	Syntax:	LuaHookCheckUserID /path/to/lua/script.lua hook_function_name [early|late]
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Experimental
	Module:	mod_lua
	Compatibility:	The optional third argument is supported in 2.3.15 and later

...

 Ordering
The optional arguments "early" or "late"
 control when this script runs relative to other modules.

LuaHookFixups Directive

	Description:	Provide a hook for the fixups phase of a request
processing
	Syntax:	LuaHookFixups /path/to/lua/script.lua hook_function_name
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Experimental
	Module:	mod_lua

 Just like LuaHookTranslateName, but executed at the fixups phase

LuaHookInsertFilter Directive

	Description:	Provide a hook for the insert_filter phase of request processing
	Syntax:	LuaHookInsertFilter /path/to/lua/script.lua hook_function_name
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Experimental
	Module:	mod_lua

Not Yet Implemented

LuaHookLog Directive

	Description:	Provide a hook for the access log phase of a request
processing
	Syntax:	LuaHookLog /path/to/lua/script.lua log_function_name
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Experimental
	Module:	mod_lua

 This simple logging hook allows you to run a function when httpd enters the
 logging phase of a request. With it, you can append data to your own logs,
 manipulate data before the regular log is written, or prevent a log entry
 from being created. To prevent the usual logging from happening, simply return
 apache2.DONE in your logging handler, otherwise return
 apache2.OK to tell httpd to log as normal.

Example:

LuaHookLog /path/to/script.lua logger

-- /path/to/script.lua --
function logger(r)
 -- flip a coin:
 -- If 1, then we write to our own Lua log and tell httpd not to log
 -- in the main log.
 -- If 2, then we just sanitize the output a bit and tell httpd to
 -- log the sanitized bits.

 if math.random(1,2) == 1 then
 -- Log stuff ourselves and don't log in the regular log
 local f = io.open("/foo/secret.log", "a")
 if f then
 f:write("Something secret happened at " .. r.uri .. "\n")
 f:close()
 end
 return apache2.DONE -- Tell httpd not to use the regular logging functions
 else
 r.uri = r.uri:gsub("somesecretstuff", "") -- sanitize the URI
 return apache2.OK -- tell httpd to log it.
 end
end

LuaHookMapToStorage Directive

	Description:	Provide a hook for the map_to_storage phase of request processing
	Syntax:	LuaHookMapToStorage /path/to/lua/script.lua hook_function_name
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Experimental
	Module:	mod_lua

 Like LuaHookTranslateName but executed at the
 map-to-storage phase of a request. Modules like mod_cache run at this phase,
 which makes for an interesting example on what to do here:

 LuaHookMapToStorage /path/to/lua/script.lua check_cache

 require"apache2"
cached_files = {}

function read_file(filename)
 local input = io.open(filename, "r")
 if input then
 local data = input:read("*a")
 cached_files[filename] = data
 file = cached_files[filename]
 input:close()
 end
 return cached_files[filename]
end

function check_cache(r)
 if r.filename:match("%.png$") then -- Only match PNG files
 local file = cached_files[r.filename] -- Check cache entries
 if not file then
 file = read_file(r.filename) -- Read file into cache
 end
 if file then -- If file exists, write it out
 r.status = 200
 r:write(file)
 r:info(("Sent %s to client from cache"):format(r.filename))
 return apache2.DONE -- skip default handler for PNG files
 end
 end
 return apache2.DECLINED -- If we had nothing to do, let others serve this.
end

LuaHookTranslateName Directive

	Description:	Provide a hook for the translate name phase of request processing
	Syntax:	LuaHookTranslateName /path/to/lua/script.lua hook_function_name [early|late]
	Context:	server config, virtual host
	Override:	All
	Status:	Experimental
	Module:	mod_lua
	Compatibility:	The optional third argument is supported in 2.3.15 and later

 Add a hook (at APR_HOOK_MIDDLE) to the translate name phase of
 request processing. The hook function receives a single
 argument, the request_rec, and should return a status code,
 which is either an HTTP error code, or the constants defined
 in the apache2 module: apache2.OK, apache2.DECLINED, or
 apache2.DONE.

 For those new to hooks, basically each hook will be invoked
 until one of them returns apache2.OK. If your hook doesn't
 want to do the translation it should just return
 apache2.DECLINED. If the request should stop processing, then
 return apache2.DONE.

 Example:

apache2.conf
LuaHookTranslateName /scripts/conf/hooks.lua silly_mapper

-- /scripts/conf/hooks.lua --
require "apache2"
function silly_mapper(r)
 if r.uri == "/" then
 r.filename = "/var/www/home.lua"
 return apache2.OK
 else
 return apache2.DECLINED
 end
end

 Context
This directive is not valid in <Directory>, <Files>, or htaccess
 context.

 Ordering
The optional arguments "early" or "late"
 control when this script runs relative to other modules.

LuaHookTypeChecker Directive

	Description:	Provide a hook for the type_checker phase of request processing
	Syntax:	LuaHookTypeChecker /path/to/lua/script.lua hook_function_name
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Experimental
	Module:	mod_lua

 This directive provides a hook for the type_checker phase of the request processing.
 This phase is where requests are assigned a content type and a handler, and thus can
 be used to modify the type and handler based on input:

 LuaHookTypeChecker /path/to/lua/script.lua type_checker

 function type_checker(r)
 if r.uri:match("%.to_gif$") then -- match foo.png.to_gif
 r.content_type = "image/gif" -- assign it the image/gif type
 r.handler = "gifWizard" -- tell the gifWizard module to handle this
 r.filename = r.uri:gsub("%.to_gif$", "") -- fix the filename requested
 return apache2.OK
 end

 return apache2.DECLINED
 end

LuaInherit Directive

	Description:	Controls how parent configuration sections are merged into children
	Syntax:	LuaInherit none|parent-first|parent-last
	Default:	LuaInherit parent-first
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Experimental
	Module:	mod_lua
	Compatibility:	2.4.0 and later

By default, if LuaHook* directives are used in overlapping
 Directory or Location configuration sections, the scripts defined in the
 more specific section are run after those defined in the more
 generic section (LuaInherit parent-first). You can reverse this order, or
 make the parent context not apply at all.

 In previous 2.3.x releases, the default was effectively to ignore LuaHook*
 directives from parent configuration sections.

LuaInputFilter Directive

	Description:	Provide a Lua function for content input filtering
	Syntax:	LuaInputFilter filter_name /path/to/lua/script.lua function_name
	Context:	server config
	Status:	Experimental
	Module:	mod_lua
	Compatibility:	2.4.5 and later

Provides a means of adding a Lua function as an input filter.
As with output filters, input filters work as coroutines,
first yielding before buffers are sent, then yielding whenever
a bucket needs to be passed down the chain, and finally (optionally)
yielding anything that needs to be appended to the input data. The
global variable bucket holds the buckets as they are passed
onto the Lua script:

LuaInputFilter myInputFilter /www/filter.lua input_filter
<Files *.lua>
 SetInputFilter myInputFilter
</Files>

--[[
 Example input filter that converts all POST data to uppercase.
]]--
function input_filter(r)
 print("luaInputFilter called") -- debug print
 coroutine.yield() -- Yield and wait for buckets
 while bucket do -- For each bucket, do...
 local output = string.upper(bucket) -- Convert all POST data to uppercase
 coroutine.yield(output) -- Send converted data down the chain
 end
 -- No more buckets available.
 coroutine.yield("&filterSignature=1234") -- Append signature at the end
end

The input filter supports denying/skipping a filter if it is deemed unwanted:

function input_filter(r)
 if not good then
 return -- Simply deny filtering, passing on the original content instead
 end
 coroutine.yield() -- wait for buckets
 ... -- insert filter stuff here
end

See "Modifying contents with Lua
filters" for more information.

LuaMapHandler Directive

	Description:	Map a path to a lua handler
	Syntax:	LuaMapHandler uri-pattern /path/to/lua/script.lua [function-name]
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Experimental
	Module:	mod_lua

 This directive matches a uri pattern to invoke a specific
 handler function in a specific file. It uses PCRE regular
 expressions to match the uri, and supports interpolating
 match groups into both the file path and the function name.
 Be careful writing your regular expressions to avoid security
 issues.

 Examples:
LuaMapHandler /(\w+)/(\w+) /scripts/$1.lua handle_$2

 This would match uri's such as /photos/show?id=9
 to the file /scripts/photos.lua and invoke the
 handler function handle_show on the lua vm after
 loading that file.

LuaMapHandler /bingo /scripts/wombat.lua

 This would invoke the "handle" function, which
 is the default if no specific function name is
 provided.

LuaOutputFilter Directive

	Description:	Provide a Lua function for content output filtering
	Syntax:	LuaOutputFilter filter_name /path/to/lua/script.lua function_name
	Context:	server config
	Status:	Experimental
	Module:	mod_lua
	Compatibility:	2.4.5 and later

Provides a means of adding a Lua function as an output filter.
As with input filters, output filters work as coroutines,
first yielding before buffers are sent, then yielding whenever
a bucket needs to be passed down the chain, and finally (optionally)
yielding anything that needs to be appended to the input data. The
global variable bucket holds the buckets as they are passed
onto the Lua script:

LuaOutputFilter myOutputFilter /www/filter.lua output_filter
<Files *.lua>
 SetOutputFilter myOutputFilter
</Files>

--[[
 Example output filter that escapes all HTML entities in the output
]]--
function output_filter(r)
 coroutine.yield("(Handled by myOutputFilter)
\n") -- Prepend some data to the output,
 -- yield and wait for buckets.
 while bucket do -- For each bucket, do...
 local output = r:escape_html(bucket) -- Escape all output
 coroutine.yield(output) -- Send converted data down the chain
 end
 -- No more buckets available.
end

As with the input filter, the output filter supports denying/skipping a filter
if it is deemed unwanted:

function output_filter(r)
 if not r.content_type:match("text/html") then
 return -- Simply deny filtering, passing on the original content instead
 end
 coroutine.yield() -- wait for buckets
 ... -- insert filter stuff here
end

Lua filters with mod_filter

 When a Lua filter is used as the underlying provider via the
FilterProvider directive, filtering
will only work when the filter-name is identical to the provider-name.

See "Modifying contents with Lua filters" for more
information.

LuaPackageCPath Directive

	Description:	Add a directory to lua's package.cpath
	Syntax:	LuaPackageCPath /path/to/include/?.soa
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Experimental
	Module:	mod_lua

 Add a path to lua's shared library search path. Follows the same
 conventions as lua. This just munges the package.cpath in the
 lua vms.

LuaPackagePath Directive

	Description:	Add a directory to lua's package.path
	Syntax:	LuaPackagePath /path/to/include/?.lua
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Experimental
	Module:	mod_lua

Add a path to lua's module search path. Follows the same
 conventions as lua. This just munges the package.path in the
 lua vms.

 Examples:
LuaPackagePath /scripts/lib/?.lua
LuaPackagePath /scripts/lib/?/init.lua

LuaQuickHandler Directive

	Description:	Provide a hook for the quick handler of request processing
	Syntax:	LuaQuickHandler /path/to/script.lua hook_function_name
	Context:	server config, virtual host
	Override:	All
	Status:	Experimental
	Module:	mod_lua

 This phase is run immediately after the request has been mapped to a virtal host,
 and can be used to either do some request processing before the other phases kick
 in, or to serve a request without the need to translate, map to storage et cetera.
 As this phase is run before anything else, directives such as <Location> or <Directory> are void in this phase, just as
 URIs have not been properly parsed yet.

 Context
This directive is not valid in <Directory>, <Files>, or htaccess
 context.

LuaRoot Directive

	Description:	Specify the base path for resolving relative paths for mod_lua directives
	Syntax:	LuaRoot /path/to/a/directory
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Experimental
	Module:	mod_lua

 Specify the base path which will be used to evaluate all
 relative paths within mod_lua. If not specified they
 will be resolved relative to the current working directory,
 which may not always work well for a server.

LuaScope Directive

	Description:	One of once, request, conn, thread -- default is once
	Syntax:	LuaScope once|request|conn|thread|server [min] [max]
	Default:	LuaScope once
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Experimental
	Module:	mod_lua

 Specify the life cycle scope of the Lua interpreter which will
 be used by handlers in this "Directory." The default is "once"

 	once:
	use the interpreter once and throw it away.
	request:
	use the interpreter to handle anything based on
 the same file within this request, which is also
 request scoped.
	conn:
	Same as request but attached to the connection_rec
	thread:
	Use the interpreter for the lifetime of the thread
 handling the request (only available with threaded MPMs).
	server:
	This one is different than others because the
 server scope is quite long lived, and multiple threads
 will have the same server_rec. To accommodate this,
 server scoped Lua states are stored in an apr
 resource list. The min and max arguments
 specify the minimum and maximum number of Lua states to keep in the
 pool.

 Generally speaking, the thread and server scopes
 execute roughly 2-3 times faster than the rest, because they don't have to
 spawn new Lua states on every request (especially with the event MPM, as
 even keepalive requests will use a new thread for each request). If you are
 satisfied that your scripts will not have problems reusing a state, then
 the thread or server scopes should be used for
 maximum performance. While the thread scope will provide the
 fastest responses, the server scope will use less memory, as
 states are pooled, allowing f.x. 1000 threads to share only 100 Lua states,
 thus using only 10% of the memory required by the thread scope.

Available Languages: en |
 fr

Comments
Notice:
This is not a Q&A section. Comments placed here should be pointed towards suggestions on improving the documentation or server, and may be removed again by our moderators if they are either implemented or considered invalid/off-topic. Questions on how to manage the Apache HTTP Server should be directed at either our IRC channel, #httpd, on Freenode, or sent to our mailing lists.

Copyright 2014 The Apache Software Foundation.
Licensed under the Apache License, Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap

