

Modules | Directives | FAQ | Glossary | Sitemap

Apache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4 > Modules

Apache Module mod_file_cache

Available Languages: en |
 fr |
 ko

	Description:	Caches a static list of files in memory
	Status:	Experimental
	Module Identifier:	file_cache_module
	Source File:	mod_file_cache.c

Summary

 This module should be used with care. You can easily create a broken
 site using mod_file_cache, so read this document
 carefully.

 Caching frequently requested files that change very
 infrequently is a technique for reducing server load.
 mod_file_cache provides two techniques for caching
 frequently requested static files. Through configuration
 directives, you can direct mod_file_cache to either
 open then mmap() a file, or to pre-open a file and save
 the file's open file handle. Both techniques reduce server
 load when processing requests for these files by doing part of the work
 (specifically, the file I/O) for serving the file when the
 server is started rather than during each request.

 Notice: You cannot use this for speeding up CGI programs or
 other files which are served by special content handlers. It
 can only be used for regular files which are usually served by
 the Apache core content handler.

 This module is an extension of and borrows heavily from the
 mod_mmap_static module in Apache 1.3.

Directives

	 CacheFile
	 MMapFile

Topics

	 Using mod_file_cache

	Comments

Using mod_file_cache

 mod_file_cache caches a list of statically
 configured files via MMapFile or CacheFile directives in the main server configuration.

 Not all platforms support both directives. You will receive an error
 message in the server error log if you attempt to use an
 unsupported directive. If given an unsupported directive, the
 server will start but the file will not be cached. On platforms
 that support both directives, you should experiment with both to
 see which works best for you.

 MMapFile Directive

 The MMapFile
 directive of mod_file_cache maps a list of
 statically configured files into memory through the system call
 mmap(). This system call is available on most modern
 Unix derivatives, but not on all. There are sometimes system-specific
 limits on the size and number of files that can be
 mmap()ed, experimentation is probably the easiest way
 to find out.

 This mmap()ing is done once at server start or
 restart, only. So whenever one of the mapped files changes on the
 filesystem you have to restart the server (see the Stopping and Restarting documentation).
 To reiterate that point: if the files are modified in place
 without restarting the server you may end up serving requests that
 are completely bogus. You should update files by unlinking the old
 copy and putting a new copy in place. Most tools such as
 rdist and mv do this. The reason why this
 modules doesn't take care of changes to the files is that this check
 would need an extra stat() every time which is a waste
 and against the intent of I/O reduction.

 CacheFile Directive

 The CacheFile
 directive of mod_file_cache opens an active
 handle or file descriptor to the file (or files)
 listed in the configuration directive and places these open file
 handles in the cache. When the file is requested, the server
 retrieves the handle from the cache and passes it to the
 sendfile() (or TransmitFile() on Windows),
 socket API.

 This file handle caching is done once at server start or
 restart, only. So whenever one of the cached files changes on
 the filesystem you have to restart the server (see the
 Stopping and Restarting
 documentation). To reiterate that point: if the files are
 modified in place without restarting the server you
 may end up serving requests that are completely bogus. You
 should update files by unlinking the old copy and putting a new
 copy in place. Most tools such as rdist and
 mv do this.

 Note

 Don't bother asking for a directive which recursively
 caches all the files in a directory. Try this instead... See the
 Include directive, and consider
 this command:

 find /www/htdocs -type f -print \

 | sed -e 's/.*/mmapfile &/' > /www/conf/mmap.conf

CacheFile Directive

	Description:	Cache a list of file handles at startup time
	Syntax:	CacheFile file-path [file-path] ...
	Context:	server config
	Status:	Experimental
	Module:	mod_file_cache

 The CacheFile directive opens handles to
 one or more files (given as whitespace separated arguments) and
 places these handles into the cache at server startup
 time. Handles to cached files are automatically closed on a server
 shutdown. When the files have changed on the filesystem, the
 server should be restarted to re-cache them.

 Be careful with the file-path arguments: They have
 to literally match the filesystem path Apache's URL-to-filename
 translation handlers create. We cannot compare inodes or other
 stuff to match paths through symbolic links etc.
 because that again would cost extra stat() system
 calls which is not acceptable. This module may or may not work
 with filenames rewritten by mod_alias or
 mod_rewrite.

 Example
CacheFile /usr/local/apache/htdocs/index.html

MMapFile Directive

	Description:	Map a list of files into memory at startup time
	Syntax:	MMapFile file-path [file-path] ...
	Context:	server config
	Status:	Experimental
	Module:	mod_file_cache

 The MMapFile directive maps one or more files
 (given as whitespace separated arguments) into memory at server
 startup time. They are automatically unmapped on a server
 shutdown. When the files have changed on the filesystem at
 least a HUP or USR1 signal should be send to
 the server to re-mmap() them.

 Be careful with the file-path arguments: They have
 to literally match the filesystem path Apache's URL-to-filename
 translation handlers create. We cannot compare inodes or other
 stuff to match paths through symbolic links etc.
 because that again would cost extra stat() system
 calls which is not acceptable. This module may or may not work
 with filenames rewritten by mod_alias or
 mod_rewrite.

 Example
MMapFile /usr/local/apache/htdocs/index.html

Available Languages: en |
 fr |
 ko

Comments
Notice:
This is not a Q&A section. Comments placed here should be pointed towards suggestions on improving the documentation or server, and may be removed again by our moderators if they are either implemented or considered invalid/off-topic. Questions on how to manage the Apache HTTP Server should be directed at either our IRC channel, #httpd, on Freenode, or sent to our mailing lists.

Copyright 2014 The Apache Software Foundation.
Licensed under the Apache License, Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap

