

Modules | Directives | FAQ | Glossary | Sitemap

Apache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4 > Modules

Apache Core Features

Available Languages: de |
 en |
 es |
 fr |
 ja |
 tr

	Description:	Core Apache HTTP Server features that are always
available
	Status:	Core

Directives

	 AcceptFilter
	 AcceptPathInfo
	 AccessFileName
	 AddDefaultCharset
	 AllowEncodedSlashes
	 AllowOverride
	 AllowOverrideList
	 CGIMapExtension
	 ContentDigest
	 DefaultRuntimeDir
	 DefaultType
	 Define
	 <Directory>
	 <DirectoryMatch>
	 DocumentRoot
	 <Else>
	 <ElseIf>
	 EnableMMAP
	 EnableSendfile
	 Error
	 ErrorDocument
	 ErrorLog
	 ErrorLogFormat
	 ExtendedStatus
	 FileETag
	 <Files>
	 <FilesMatch>
	 ForceType
	 GprofDir
	 HostnameLookups
	 <If>
	 <IfDefine>
	 <IfModule>
	 Include
	 IncludeOptional
	 KeepAlive
	 KeepAliveTimeout
	 <Limit>
	 <LimitExcept>
	 LimitInternalRecursion
	 LimitRequestBody
	 LimitRequestFields
	 LimitRequestFieldSize
	 LimitRequestLine
	 LimitXMLRequestBody
	 <Location>
	 <LocationMatch>
	 LogLevel
	 MaxKeepAliveRequests
	 MaxRangeOverlaps
	 MaxRangeReversals
	 MaxRanges
	 MergeTrailers
	 Mutex
	 NameVirtualHost
	 Options
	 Protocol
	 RLimitCPU
	 RLimitMEM
	 RLimitNPROC
	 ScriptInterpreterSource
	 SeeRequestTail
	 ServerAdmin
	 ServerAlias
	 ServerName
	 ServerPath
	 ServerRoot
	 ServerSignature
	 ServerTokens
	 SetHandler
	 SetInputFilter
	 SetOutputFilter
	 TimeOut
	 TraceEnable
	 UnDefine
	 UseCanonicalName
	 UseCanonicalPhysicalPort
	 <VirtualHost>

	Comments

AcceptFilter Directive

	Description:	Configures optimizations for a Protocol's Listener Sockets
	Syntax:	AcceptFilter protocol accept_filter
	Context:	server config
	Status:	Core
	Module:	core

 This directive enables operating system specific optimizations for a
 listening socket by the Protocol type.
 The basic premise is for the kernel to not send a socket to the server
 process until either data is received or an entire HTTP Request is buffered.
 Only
 FreeBSD's Accept Filters, Linux's more primitive
 TCP_DEFER_ACCEPT, and Windows' optimized AcceptEx()
 are currently supported.

 Using none for an argument will disable any accept filters
 for that protocol. This is useful for protocols that require a server
 send data first, such as ftp: or nntp:

 AcceptFilter nntp none

 The default protocol names are https for port 443
 and http for all other ports. To specify another protocol
 is being used with a listening port, add the protocol
 argument to the Listen
 directive.

 The default values on FreeBSD are:

 AcceptFilter http httpready
AcceptFilter https dataready

 The httpready accept filter buffers entire HTTP requests at
 the kernel level. Once an entire request is received, the kernel then
 sends it to the server. See the

 accf_http(9) man page for more details. Since HTTPS requests are
 encrypted only the
 accf_data(9) filter is used.

 The default values on Linux are:

 AcceptFilter http data
AcceptFilter https data

 Linux's TCP_DEFER_ACCEPT does not support buffering http
 requests. Any value besides none will enable
 TCP_DEFER_ACCEPT on that listener. For more details
 see the Linux

 tcp(7) man page.

 The default values on Windows are:

 AcceptFilter http data
AcceptFilter https data

 Window's mpm_winnt interprets the AcceptFilter to toggle the AcceptEx()
 API, and does not support http protocol buffering. There are two values
 which utilize the Windows AcceptEx() API and will recycle network
 sockets between connections. data waits until data has
 been transmitted as documented above, and the initial data buffer and
 network endpoint addresses are all retrieved from the single AcceptEx()
 invocation. connect will use the AcceptEx() API, also
 retrieve the network endpoint addresses, but like none
 the connect option does not wait for the initial data
 transmission.

 On Windows, none uses accept() rather than AcceptEx()
 and will not recycle sockets between connections. This is useful for
 network adapters with broken driver support, as well as some virtual
 network providers such as vpn drivers, or spam, virus or spyware
 filters.

See also

	Protocol

AcceptPathInfo Directive

	Description:	Resources accept trailing pathname information
	Syntax:	AcceptPathInfo On|Off|Default
	Default:	AcceptPathInfo Default
	Context:	server config, virtual host, directory, .htaccess
	Override:	FileInfo
	Status:	Core
	Module:	core

 This directive controls whether requests that contain trailing
 pathname information that follows an actual filename (or
 non-existent file in an existing directory) will be accepted or
 rejected. The trailing pathname information can be made
 available to scripts in the PATH_INFO environment
 variable.

 For example, assume the location /test/ points to
 a directory that contains only the single file
 here.html. Then requests for
 /test/here.html/more and
 /test/nothere.html/more both collect
 /more as PATH_INFO.

 The three possible arguments for the
 AcceptPathInfo directive are:

 	Off
	A request will only be accepted if it
 maps to a literal path that exists. Therefore a request with
 trailing pathname information after the true filename such as
 /test/here.html/more in the above example will return
 a 404 NOT FOUND error.
	On
	A request will be accepted if a
 leading path component maps to a file that exists. The above
 example /test/here.html/more will be accepted if
 /test/here.html maps to a valid file.
	Default
	The treatment of requests with
 trailing pathname information is determined by the handler responsible for the request.
 The core handler for normal files defaults to rejecting
 PATH_INFO requests. Handlers that serve scripts, such as cgi-script and isapi-handler, generally accept
 PATH_INFO by default.

 The primary purpose of the AcceptPathInfo
 directive is to allow you to override the handler's choice of
 accepting or rejecting PATH_INFO. This override is required,
 for example, when you use a filter, such
 as INCLUDES, to generate content
 based on PATH_INFO. The core handler would usually reject
 the request, so you can use the following configuration to enable
 such a script:

 <Files "mypaths.shtml">
 Options +Includes
 SetOutputFilter INCLUDES
 AcceptPathInfo On
</Files>

AccessFileName Directive

	Description:	Name of the distributed configuration file
	Syntax:	AccessFileName filename [filename] ...
	Default:	AccessFileName .htaccess
	Context:	server config, virtual host
	Status:	Core
	Module:	core

 While processing a request the server looks for
 the first existing configuration file from this list of names in
 every directory of the path to the document, if distributed
 configuration files are enabled for that
 directory. For example:

 AccessFileName .acl

 before returning the document
 /usr/local/web/index.html, the server will read
 /.acl, /usr/.acl,
 /usr/local/.acl and /usr/local/web/.acl
 for directives, unless they have been disabled with

 <Directory />
 AllowOverride None
</Directory>

See also

	AllowOverride
	Configuration Files
	.htaccess Files

AddDefaultCharset Directive

	Description:	Default charset parameter to be added when a response
content-type is text/plain or text/html
	Syntax:	AddDefaultCharset On|Off|charset
	Default:	AddDefaultCharset Off
	Context:	server config, virtual host, directory, .htaccess
	Override:	FileInfo
	Status:	Core
	Module:	core

 This directive specifies a default value for the media type
 charset parameter (the name of a character encoding) to be added
 to a response if and only if the response's content-type is either
 text/plain or text/html. This should override
 any charset specified in the body of the response via a META
 element, though the exact behavior is often dependent on the user's client
 configuration. A setting of AddDefaultCharset Off
 disables this functionality. AddDefaultCharset On enables
 a default charset of iso-8859-1. Any other value is assumed
 to be the charset to be used, which should be one of the
 IANA registered
 charset values for use in Internet media types (MIME types).
 For example:

 AddDefaultCharset utf-8

 AddDefaultCharset should only be used when all
 of the text resources to which it applies are known to be in that
 character encoding and it is too inconvenient to label their charset
 individually. One such example is to add the charset parameter
 to resources containing generated content, such as legacy CGI
 scripts, that might be vulnerable to cross-site scripting attacks
 due to user-provided data being included in the output. Note, however,
 that a better solution is to just fix (or delete) those scripts, since
 setting a default charset does not protect users that have enabled
 the "auto-detect character encoding" feature on their browser.

See also

	AddCharset

AllowEncodedSlashes Directive

	Description:	Determines whether encoded path separators in URLs are allowed to
be passed through
	Syntax:	AllowEncodedSlashes On|Off|NoDecode
	Default:	AllowEncodedSlashes Off
	Context:	server config, virtual host
	Status:	Core
	Module:	core
	Compatibility:	
NoDecode option available in 2.3.12 and later.

 The AllowEncodedSlashes directive allows URLs
 which contain encoded path separators (%2F for /
 and additionally %5C for \ on according systems)
 to be used in the path info.

 With the default value, Off, such URLs are refused
 with a 404 (Not found) error.

 With the value On, such URLs are accepted, and encoded
 slashes are decoded like all other encoded characters.

 With the value NoDecode, such URLs are accepted, but
 encoded slashes are not decoded but left in their encoded state.

 Turning AllowEncodedSlashes On is
 mostly useful when used in conjunction with PATH_INFO.

 Note

 If encoded slashes are needed in path info, use of NoDecode is
 strongly recommended as a security measure. Allowing slashes
 to be decoded could potentially allow unsafe paths.

See also

	AcceptPathInfo

AllowOverride Directive

	Description:	Types of directives that are allowed in
.htaccess files
	Syntax:	AllowOverride All|None|directive-type
[directive-type] ...
	Default:	AllowOverride None (2.3.9 and later), AllowOverride All (2.3.8 and earlier)
	Context:	directory
	Status:	Core
	Module:	core

 When the server finds an .htaccess file (as
 specified by AccessFileName)
 it needs to know which directives declared in that file can override
 earlier configuration directives.

 Only available in <Directory> sections

 AllowOverride is valid only in
 <Directory>
 sections specified without regular expressions, not in <Location>, <DirectoryMatch> or
 <Files> sections.

 When this directive is set to None and AllowOverrideList is set to
 None .htaccess files are
 completely ignored. In this case, the server will not even attempt
 to read .htaccess files in the filesystem.

 When this directive is set to All, then any
 directive which has the .htaccess Context is allowed in
 .htaccess files.

 The directive-type can be one of the following
 groupings of directives.

 	AuthConfig
	

 Allow use of the authorization directives (AuthDBMGroupFile,
 AuthDBMUserFile,
 AuthGroupFile,
 AuthName,
 AuthType, AuthUserFile, Require, etc.).
	FileInfo
	
 Allow use of the directives controlling document types
 (ErrorDocument,
 ForceType,
 LanguagePriority,
 SetHandler,
 SetInputFilter,
 SetOutputFilter, and
 mod_mime Add* and Remove* directives),
 document meta data (Header, RequestHeader, SetEnvIf, SetEnvIfNoCase, BrowserMatch, CookieExpires, CookieDomain, CookieStyle, CookieTracking, CookieName),
 mod_rewrite directives (RewriteEngine, RewriteOptions, RewriteBase, RewriteCond, RewriteRule),
 mod_alias directives (Redirect, RedirectTemp, RedirectPermanent, RedirectMatch), and
 Action from
 mod_actions.

	Indexes
	
 Allow use of the directives controlling directory indexing
 (AddDescription,
 AddIcon, AddIconByEncoding,
 AddIconByType,
 DefaultIcon, DirectoryIndex, FancyIndexing, HeaderName, IndexIgnore, IndexOptions, ReadmeName,
 etc.).
	Limit
	
 Allow use of the directives controlling host access (Allow, Deny and Order).
	Nonfatal=[Override|Unknown|All]
	
 Allow use of AllowOverride option to treat syntax errors in
 .htaccess as non-fatal: instead of causing an Internal Server
 Error, disallowed or unrecognised directives will be ignored
 and a warning logged:
 	Nonfatal=Override treats directives
 forbidden by AllowOverride as non-fatal.
	Nonfatal=Unknown treats unknown directives
 as non-fatal. This covers typos and directives implemented
 by a module that's not present.
	Nonfatal=All treats both the above as non-fatal.

 Note that a syntax error in a valid directive will still cause
 an internal server error.

 Security

 Nonfatal errors may have security implications for .htaccess users.
 For example, if AllowOverride disallows AuthConfig, users'
 configuration designed to restrict access to a site will be disabled.

	Options[=Option,...]
	
 Allow use of the directives controlling specific directory
 features (Options and
 XBitHack).
 An equal sign may be given followed by a comma (but no spaces)
 separated lists of options that may be set using the Options command.

 Implicit disabling of Options

 Even though the list of options that may be used in .htaccess files
 can be limited with this directive, as long as any Options directive is allowed any
 other inherited option can be disabled by using the non-relative
 syntax. In other words, this mechanism cannot force a specific option
 to remain set while allowing any others to be set.

 AllowOverride Options=Indexes,MultiViews

 Example:

 AllowOverride AuthConfig Indexes

 In the example above all directives that are neither in the group
 AuthConfig nor Indexes cause an internal
 server error.

 For security and performance reasons, do not set
 AllowOverride to anything other than None
 in your <Directory /> block. Instead, find (or
 create) the <Directory> block that refers to the
 directory where you're actually planning to place a
 .htaccess file.

See also

	AccessFileName
	AllowOverrideList
	Configuration Files
	.htaccess Files

AllowOverrideList Directive

	Description:	Individual directives that are allowed in
.htaccess files
	Syntax:	AllowOverrideList None|directive
[directive-type] ...
	Default:	AllowOverrideList None
	Context:	directory
	Status:	Core
	Module:	core

 When the server finds an .htaccess file (as
 specified by AccessFileName)
 it needs to know which directives declared in that file can override
 earlier configuration directives.

 Only available in <Directory> sections

 AllowOverrideList is valid only in
 <Directory>
 sections specified without regular expressions, not in <Location>, <DirectoryMatch> or
 <Files> sections.

 When this directive is set to None and AllowOverride is set to None,
 then .htaccess files are completely
 ignored. In this case, the server will not even attempt to read
 .htaccess files in the filesystem.

 Example:

 AllowOverride None
AllowOverrideList Redirect RedirectMatch

 In the example above only the Redirect and
 RedirectMatch directives are allowed. All others will
 cause an internal server error.

 Example:

 AllowOverride AuthConfig
AllowOverrideList CookieTracking CookieName

 In the example above AllowOverride
 grants permission to the AuthConfig
 directive grouping and AllowOverrideList grants
 permission to only two directives from the FileInfo directive
 grouping. All others will cause an internal server error.

See also

	AccessFileName
	AllowOverride
	Configuration Files
	.htaccess Files

CGIMapExtension Directive

	Description:	Technique for locating the interpreter for CGI
scripts
	Syntax:	CGIMapExtension cgi-path .extension
	Context:	directory, .htaccess
	Override:	FileInfo
	Status:	Core
	Module:	core
	Compatibility:	NetWare only

 This directive is used to control how Apache httpd finds the
 interpreter used to run CGI scripts. For example, setting
 CGIMapExtension sys:\foo.nlm .foo will
 cause all CGI script files with a .foo extension to
 be passed to the FOO interpreter.

ContentDigest Directive

	Description:	Enables the generation of Content-MD5 HTTP Response
headers
	Syntax:	ContentDigest On|Off
	Default:	ContentDigest Off
	Context:	server config, virtual host, directory, .htaccess
	Override:	Options
	Status:	Core
	Module:	core

 This directive enables the generation of
 Content-MD5 headers as defined in RFC1864
 respectively RFC2616.

 MD5 is an algorithm for computing a "message digest"
 (sometimes called "fingerprint") of arbitrary-length data, with
 a high degree of confidence that any alterations in the data
 will be reflected in alterations in the message digest.

 The Content-MD5 header provides an end-to-end
 message integrity check (MIC) of the entity-body. A proxy or
 client may check this header for detecting accidental
 modification of the entity-body in transit. Example header:

 Content-MD5: AuLb7Dp1rqtRtxz2m9kRpA==

 Note that this can cause performance problems on your server
 since the message digest is computed on every request (the
 values are not cached).

 Content-MD5 is only sent for documents served
 by the core, and not by any module. For example,
 SSI documents, output from CGI scripts, and byte range responses
 do not have this header.

DefaultRuntimeDir Directive

	Description:	Base directory for the server run-time files
	Syntax:	DefaultRuntimeDir directory-path
	Default:	DefaultRuntimeDir DEFAULT_REL_RUNTIMEDIR (logs/)
	Context:	server config
	Status:	Core
	Module:	core
	Compatibility:	Available in Apache 2.4.2 and later

 The DefaultRuntimeDir directive sets the
 directory in which the server will create various run-time files
 (shared memory, locks, etc.). If set as a relative path, the full path
 will be relative to ServerRoot.

 Example

 DefaultRuntimeDir scratch/

 The default location of DefaultRuntimeDir may be
 modified by changing the DEFAULT_REL_RUNTIMEDIR #define
 at build time.

 Note: ServerRoot should be specified before this
 directive is used, otherwise the default value of ServerRoot
 would be used to set the base directory.

See also

	the
 security tips for information on how to properly set
 permissions on the ServerRoot

DefaultType Directive

	Description:	This directive has no effect other than to emit warnings
if the value is not none. In prior versions, DefaultType
would specify a default media type to assign to response content for
which no other media type configuration could be found.

	Syntax:	DefaultType media-type|none
	Default:	DefaultType none
	Context:	server config, virtual host, directory, .htaccess
	Override:	FileInfo
	Status:	Core
	Module:	core
	Compatibility:	The argument none is available in Apache httpd 2.2.7 and later. All other choices are DISABLED for 2.3.x and later.

 This directive has been disabled. For backwards compatibility
 of configuration files, it may be specified with the value
 none, meaning no default media type. For example:

 DefaultType None

 DefaultType None is only available in
 httpd-2.2.7 and later.

 Use the mime.types configuration file and the
 AddType to configure media
 type assignments via file extensions, or the
 ForceType directive to configure
 the media type for specific resources. Otherwise, the server will
 send the response without a Content-Type header field and the
 recipient may attempt to guess the media type.

Define Directive

	Description:	Define a variable
	Syntax:	Define parameter-name [parameter-value]
	Context:	server config, virtual host, directory
	Status:	Core
	Module:	core

 In its one parameter form, Define is equivalent
 to passing the -D argument to httpd. It
 can be used to toggle the use of
 <IfDefine> sections
 without needing to alter -D arguments in any startup
 scripts.

 In addition to that, if the second parameter is given, a config variable
 is set to this value. The variable can be used in the configuration using
 the ${VAR} syntax. The variable is always globally defined
 and not limited to the scope of the surrounding config section.

 <IfDefine TEST>
 Define servername test.example.com
</IfDefine>
<IfDefine !TEST>
 Define servername www.example.com
 Define SSL
</IfDefine>

DocumentRoot /var/www/${servername}/htdocs

 Variable names may not contain colon ":" characters, to avoid clashes
 with RewriteMap's syntax.

<Directory> Directive

	Description:	Enclose a group of directives that apply only to the
named file-system directory, sub-directories, and their contents.
	Syntax:	<Directory directory-path>
... </Directory>
	Context:	server config, virtual host
	Status:	Core
	Module:	core

 <Directory> and
 </Directory> are used to enclose a group of
 directives that will apply only to the named directory,
 sub-directories of that directory, and the files within the respective
 directories. Any directive that is allowed
 in a directory context may be used. Directory-path is
 either the full path to a directory, or a wild-card string using
 Unix shell-style matching. In a wild-card string, ? matches
 any single character, and * matches any sequences of
 characters. You may also use [] character ranges. None
 of the wildcards match a `/' character, so <Directory
 /*/public_html> will not match
 /home/user/public_html, but <Directory
 /home/*/public_html> will match. Example:

 <Directory "/usr/local/httpd/htdocs">
 Options Indexes FollowSymLinks
</Directory>

 Be careful with the directory-path arguments:
 They have to literally match the filesystem path which Apache httpd uses
 to access the files. Directives applied to a particular
 <Directory> will not apply to files accessed from
 that same directory via a different path, such as via different symbolic
 links.

 Regular
 expressions can also be used, with the addition of the
 ~ character. For example:

 <Directory ~ "^/www/[0-9]{3}">

</Directory>

 would match directories in /www/ that consisted of
 three numbers.

 If multiple (non-regular expression) <Directory> sections
 match the directory (or one of its parents) containing a document,
 then the directives are applied in the order of shortest match
 first, interspersed with the directives from the .htaccess files. For example,
 with

 <Directory />
 AllowOverride None
</Directory>

<Directory "/home">
 AllowOverride FileInfo
</Directory>

 for access to the document /home/web/dir/doc.html
 the steps are:

 	Apply directive AllowOverride None
 (disabling .htaccess files).
	Apply directive AllowOverride FileInfo (for
 directory /home).
	Apply any FileInfo directives in
 /home/.htaccess, /home/web/.htaccess and
 /home/web/dir/.htaccess in that order.

 Regular expressions are not considered until after all of the
 normal sections have been applied. Then all of the regular
 expressions are tested in the order they appeared in the
 configuration file. For example, with

 <Directory ~ "abc$">
 # ... directives here ...
</Directory>

 the regular expression section won't be considered until after
 all normal <Directory>s and
 .htaccess files have been applied. Then the regular
 expression will match on /home/abc/public_html/abc and
 the corresponding <Directory> will
 be applied.

 Note that the default access for
 <Directory /> is to permit all access.
 This means that Apache httpd will serve any file mapped from an URL. It is
 recommended that you change this with a block such
 as

 <Directory />
 Require all denied
</Directory>

 and then override this for directories you
 want accessible. See the Security Tips page for more
 details.

 The directory sections occur in the apache2.conf file.
 <Directory> directives
 cannot nest, and cannot appear in a <Limit> or <LimitExcept> section.

See also

	How <Directory>,
 <Location> and <Files> sections work for an
 explanation of how these different sections are combined when a
 request is received

<DirectoryMatch> Directive

	Description:	Enclose directives that apply to
the contents of file-system directories matching a regular expression.
	Syntax:	<DirectoryMatch regex>
... </DirectoryMatch>
	Context:	server config, virtual host
	Status:	Core
	Module:	core

 <DirectoryMatch> and
 </DirectoryMatch> are used to enclose a group
 of directives which will apply only to the named directory (and the files within),
 the same as <Directory>.
 However, it takes as an argument a
 regular expression. For example:

 <DirectoryMatch "^/www/(.+/)?[0-9]{3}">
 # ...
</DirectoryMatch>

 would match directories in /www/ that consisted of three
 numbers.

 Compatability

 Prior to 2.3.9, this directive implicitly applied to sub-directories
 (like <Directory>) and
 could not match the end of line symbol ($). In 2.3.9 and later,
 only directories that match the expression are affected by the enclosed
 directives.

 Trailing Slash

 This directive applies to requests for directories that may or may
 not end in a trailing slash, so expressions that are anchored to the
 end of line ($) must be written with care.

 From 2.4.8 onwards, named groups and backreferences are captured and
 written to the environment with the corresponding name prefixed with
 "MATCH_" and in upper case. This allows elements of paths to be referenced
 from within expressions and modules like
 mod_rewrite. In order to prevent confusion, numbered
 (unnamed) backreferences are ignored. Use named groups instead.

<DirectoryMatch ^/var/www/combined/(?<sitename>[^/]+)>
 require ldap-group cn=%{env:MATCH_SITENAME},ou=combined,o=Example
</DirectoryMatch>

See also

	<Directory> for
a description of how regular expressions are mixed in with normal
<Directory>s
	How <Directory>, <Location> and
<Files> sections work for an explanation of how these different
sections are combined when a request is received

DocumentRoot Directive

	Description:	Directory that forms the main document tree visible
from the web
	Syntax:	DocumentRoot directory-path
	Default:	DocumentRoot /usr/local/apache/htdocs
	Context:	server config, virtual host
	Status:	Core
	Module:	core

 This directive sets the directory from which httpd
 will serve files. Unless matched by a directive like Alias, the server appends the
 path from the requested URL to the document root to make the
 path to the document. Example:

 DocumentRoot "/usr/web"

 then an access to
 http://my.example.com/index.html refers to
 /usr/web/index.html. If the directory-path is
 not absolute then it is assumed to be relative to the ServerRoot.

 The DocumentRoot should be specified without
 a trailing slash.

See also

	Mapping URLs to Filesystem
Locations

<Else> Directive

	Description:	Contains directives that apply only if the condition of a
previous <If> or
<ElseIf> section is not
satisfied by a request at runtime
	Syntax:	<Else> ... </Else>
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Core
	Module:	core

 The <Else> applies the enclosed
 directives if and only if the most recent
 <If> or
 <ElseIf> section
 in the same scope has not been applied.
 For example: In

 <If "-z req('Host')">
 # ...
</If>
<Else>
 # ...
</Else>

 The <If> would match HTTP/1.0
 requests without a Host: header and the
 <Else> would match requests
 with a Host: header.

See also

	<If>
	<ElseIf>
	How <Directory>, <Location>,
 <Files> sections work for an explanation of how these
 different sections are combined when a request is received.
 <If>,
 <ElseIf>, and
 <Else> are applied last.

<ElseIf> Directive

	Description:	Contains directives that apply only if a condition is satisfied
by a request at runtime while the condition of a previous
<If> or
<ElseIf> section is not
satisfied
	Syntax:	<ElseIf expression> ... </ElseIf>
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Core
	Module:	core

 The <ElseIf> applies the enclosed
 directives if and only if both the given condition evaluates to true and
 the most recent <If> or
 <ElseIf> section in the same scope has
 not been applied. For example: In

 <If "-R '10.1.0.0/16'">
 #...
</If>
<ElseIf "-R '10.0.0.0/8'">
 #...
</ElseIf>
<Else>
 #...
</Else>

 The <ElseIf> would match if
 the remote address of a request belongs to the subnet 10.0.0.0/8 but
 not to the subnet 10.1.0.0/16.

See also

	Expressions in Apache HTTP Server,
for a complete reference and more examples.
	<If>
	<Else>
	How <Directory>, <Location>,
 <Files> sections work for an explanation of how these
 different sections are combined when a request is received.
 <If>,
 <ElseIf>, and
 <Else> are applied last.

EnableMMAP Directive

	Description:	Use memory-mapping to read files during delivery
	Syntax:	EnableMMAP On|Off
	Default:	EnableMMAP On
	Context:	server config, virtual host, directory, .htaccess
	Override:	FileInfo
	Status:	Core
	Module:	core

 This directive controls whether the httpd may use
 memory-mapping if it needs to read the contents of a file during
 delivery. By default, when the handling of a request requires
 access to the data within a file -- for example, when delivering a
 server-parsed file using mod_include -- Apache httpd
 memory-maps the file if the OS supports it.

 This memory-mapping sometimes yields a performance improvement.
 But in some environments, it is better to disable the memory-mapping
 to prevent operational problems:

 	On some multiprocessor systems, memory-mapping can reduce the
 performance of the httpd.
	Deleting or truncating a file while httpd
 has it memory-mapped can cause httpd to
 crash with a segmentation fault.

 For server configurations that are vulnerable to these problems,
 you should disable memory-mapping of delivered files by specifying:

 EnableMMAP Off

 For NFS mounted files, this feature may be disabled explicitly for
 the offending files by specifying:

 <Directory "/path-to-nfs-files">
 EnableMMAP Off
</Directory>

EnableSendfile Directive

	Description:	Use the kernel sendfile support to deliver files to the client
	Syntax:	EnableSendfile On|Off
	Default:	EnableSendfile Off
	Context:	server config, virtual host, directory, .htaccess
	Override:	FileInfo
	Status:	Core
	Module:	core
	Compatibility:	Default changed to Off in
version 2.3.9.

 This directive controls whether httpd may use the
 sendfile support from the kernel to transmit file contents to the client.
 By default, when the handling of a request requires no access
 to the data within a file -- for example, when delivering a
 static file -- Apache httpd uses sendfile to deliver the file contents
 without ever reading the file if the OS supports it.

 This sendfile mechanism avoids separate read and send operations,
 and buffer allocations. But on some platforms or within some
 filesystems, it is better to disable this feature to avoid
 operational problems:

 	Some platforms may have broken sendfile support that the build
 system did not detect, especially if the binaries were built on
 another box and moved to such a machine with broken sendfile
 support.
	On Linux the use of sendfile triggers TCP-checksum
 offloading bugs on certain networking cards when using IPv6.
	On Linux on Itanium, sendfile may be unable to handle
 files over 2GB in size.
	With a network-mounted DocumentRoot (e.g., NFS, SMB, CIFS, FUSE),
 the kernel may be unable to serve the network file through
 its own cache.

 For server configurations that are not vulnerable to these problems,
 you may enable this feature by specifying:

 EnableSendfile On

 For network mounted files, this feature may be disabled explicitly
 for the offending files by specifying:

 <Directory "/path-to-nfs-files">
 EnableSendfile Off
</Directory>

 Please note that the per-directory and .htaccess configuration
 of EnableSendfile is not supported by
 mod_cache_disk.
 Only global definition of EnableSendfile
 is taken into account by the module.

Error Directive

	Description:	Abort configuration parsing with a custom error message
	Syntax:	Error message
	Context:	server config, virtual host, directory, .htaccess
	Status:	Core
	Module:	core
	Compatibility:	2.3.9 and later

 If an error can be detected within the configuration, this
 directive can be used to generate a custom error message, and halt
 configuration parsing. The typical use is for reporting required
 modules which are missing from the configuration.

 # Example
ensure that mod_include is loaded
<IfModule !include_module>
 Error "mod_include is required by mod_foo. Load it with LoadModule."
</IfModule>

ensure that exactly one of SSL,NOSSL is defined
<IfDefine SSL>
<IfDefine NOSSL>
 Error "Both SSL and NOSSL are defined. Define only one of them."
</IfDefine>
</IfDefine>
<IfDefine !SSL>
<IfDefine !NOSSL>
 Error "Either SSL or NOSSL must be defined."
</IfDefine>
</IfDefine>

ErrorDocument Directive

	Description:	What the server will return to the client
in case of an error
	Syntax:	ErrorDocument error-code document
	Context:	server config, virtual host, directory, .htaccess
	Override:	FileInfo
	Status:	Core
	Module:	core

 In the event of a problem or error, Apache httpd can be configured
 to do one of four things,

 	output a simple hardcoded error message
	output a customized message
	internally redirect to a local URL-path to handle the
 problem/error
	redirect to an external URL to handle the
 problem/error

 The first option is the default, while options 2-4 are
 configured using the ErrorDocument
 directive, which is followed by the HTTP response code and a URL
 or a message. Apache httpd will sometimes offer additional information
 regarding the problem/error.

 URLs can begin with a slash (/) for local web-paths (relative
 to the DocumentRoot), or be a
 full URL which the client can resolve. Alternatively, a message
 can be provided to be displayed by the browser. Examples:

 ErrorDocument 500 http://foo.example.com/cgi-bin/tester
ErrorDocument 404 /cgi-bin/bad_urls.pl
ErrorDocument 401 /subscription_info.html
ErrorDocument 403 "Sorry can't allow you access today"
ErrorDocument 403 Forbidden!

 Additionally, the special value default can be used
 to specify Apache httpd's simple hardcoded message. While not required
 under normal circumstances, default will restore
 Apache httpd's simple hardcoded message for configurations that would
 otherwise inherit an existing ErrorDocument.

 ErrorDocument 404 /cgi-bin/bad_urls.pl

<Directory /web/docs>
 ErrorDocument 404 default
</Directory>

 Note that when you specify an ErrorDocument
 that points to a remote URL (ie. anything with a method such as
 http in front of it), Apache HTTP Server will send a redirect to the
 client to tell it where to find the document, even if the
 document ends up being on the same server. This has several
 implications, the most important being that the client will not
 receive the original error status code, but instead will
 receive a redirect status code. This in turn can confuse web
 robots and other clients which try to determine if a URL is
 valid using the status code. In addition, if you use a remote
 URL in an ErrorDocument 401, the client will not
 know to prompt the user for a password since it will not
 receive the 401 status code. Therefore, if you use an
 ErrorDocument 401 directive then it must refer to a local
 document.

 Microsoft Internet Explorer (MSIE) will by default ignore
 server-generated error messages when they are "too small" and substitute
 its own "friendly" error messages. The size threshold varies depending on
 the type of error, but in general, if you make your error document
 greater than 512 bytes, then MSIE will show the server-generated
 error rather than masking it. More information is available in
 Microsoft Knowledge Base article Q294807.

 Although most error messages can be overridden, there are certain
 circumstances where the internal messages are used regardless of the
 setting of ErrorDocument. In
 particular, if a malformed request is detected, normal request processing
 will be immediately halted and the internal error message returned.
 This is necessary to guard against security problems caused by
 bad requests.

 If you are using mod_proxy, you may wish to enable
 ProxyErrorOverride so that you can provide
 custom error messages on behalf of your Origin servers. If you don't enable ProxyErrorOverride,
 Apache httpd will not generate custom error documents for proxied content.

See also

	documentation of
 customizable responses

ErrorLog Directive

	Description:	Location where the server will log errors
	Syntax:	 ErrorLog file-path|syslog[:facility]
	Default:	ErrorLog logs/error_log (Unix) ErrorLog logs/error.log (Windows and OS/2)
	Context:	server config, virtual host
	Status:	Core
	Module:	core

 The ErrorLog directive sets the name of
 the file to which the server will log any errors it encounters. If
 the file-path is not absolute then it is assumed to be
 relative to the ServerRoot.

 ErrorLog "/var/log/httpd/error_log"

 If the file-path
 begins with a pipe character "|" then it is assumed to be a
 command to spawn to handle the error log.

 ErrorLog "|/usr/local/bin/httpd_errors"

 See the notes on piped logs for
 more information.

 Using syslog instead of a filename enables logging
 via syslogd(8) if the system supports it. The default is to use
 syslog facility local7, but you can override this by
 using the syslog:facility syntax where
 facility can be one of the names usually documented in
 syslog(1). The facility is effectively global, and if it is changed
 in individual virtual hosts, the final facility specified affects the
 entire server.

 ErrorLog syslog:user

 SECURITY: See the security tips
 document for details on why your security could be compromised
 if the directory where log files are stored is writable by
 anyone other than the user that starts the server.

 Note

 When entering a file path on non-Unix platforms, care should be taken
 to make sure that only forward slashes are used even though the platform
 may allow the use of back slashes. In general it is a good idea to always
 use forward slashes throughout the configuration files.

See also

	LogLevel
	Apache HTTP Server Log Files

ErrorLogFormat Directive

	Description:	Format specification for error log entries
	Syntax:	 ErrorLogFormat [connection|request] format
	Context:	server config, virtual host
	Status:	Core
	Module:	core

 ErrorLogFormat allows to specify what
 supplementary information is logged in the error log in addition to the
 actual log message.

 #Simple example
ErrorLogFormat "[%t] [%l] [pid %P] %F: %E: [client %a] %M"

 Specifying connection or request as first
 parameter allows to specify additional formats, causing additional
 information to be logged when the first message is logged for a specific
 connection or request, respectively. This additional information is only
 logged once per connection/request. If a connection or request is processed
 without causing any log message, the additional information is not logged
 either.

 It can happen that some format string items do not produce output. For
 example, the Referer header is only present if the log message is
 associated to a request and the log message happens at a time when the
 Referer header has already been read from the client. If no output is
 produced, the default behavior is to delete everything from the preceding
 space character to the next space character. This means the log line is
 implicitly divided into fields on non-whitespace to whitespace transitions.
 If a format string item does not produce output, the whole field is
 omitted. For example, if the remote address %a in the log
 format [%t] [%l] [%a] %M is not available, the surrounding
 brackets are not logged either. Space characters can be escaped with a
 backslash to prevent them from delimiting a field. The combination '% '
 (percent space) is a zero-width field delimiter that does not produce any
 output.

 The above behavior can be changed by adding modifiers to the format
 string item. A - (minus) modifier causes a minus to be logged if the
 respective item does not produce any output. In once-per-connection/request
 formats, it is also possible to use the + (plus) modifier. If an
 item with the plus modifier does not produce any output, the whole line is
 omitted.

 A number as modifier can be used to assign a log severity level to a
 format item. The item will only be logged if the severity of the log
 message is not higher than the specified log severity level. The number can
 range from 1 (alert) over 4 (warn) and 7 (debug) to 15 (trace8).

 For example, here's what would happen if you added modifiers to
 the %{Referer}i token, which logs the
 Referer request header.

 	Modified Token	Meaning
	%-{Referer}i	Logs a - if Referer is not set.
	%+{Referer}i	Omits the entire line if Referer is not set.
	%4{Referer}i	Logs the Referer only if the log message severity
 is higher than 4.

 Some format string items accept additional parameters in braces.

 	Format String	Description
	%%	The percent sign
	%a	Client IP address and port of the request
	%{c}a	Underlying peer IP address and port of the connection (see the
 mod_remoteip module)
	%A	Local IP-address and port
	%{name}e	Request environment variable name
	%E	APR/OS error status code and string
	%F	Source file name and line number of the log call
	%{name}i	Request header name
	%k	Number of keep-alive requests on this connection
	%l	Loglevel of the message
	%L	Log ID of the request
	%{c}L	Log ID of the connection
	%{C}L	Log ID of the connection if used in connection scope, empty otherwise
	%m	Name of the module logging the message
	%M	The actual log message
	%{name}n	Request note name
	%P	Process ID of current process
	%T	Thread ID of current thread
	%{g}T	System unique thread ID of current thread (the same ID as
 displayed by e.g. top; currently Linux only)
	%t	The current time
	%{u}t	The current time including micro-seconds
	%{cu}t	The current time in compact ISO 8601 format, including
 micro-seconds
	%v	The canonical ServerName
 of the current server.
	%V	The server name of the server serving the request according to the
 UseCanonicalName
 setting.
	\ (backslash space)	Non-field delimiting space
	% (percent space)	Field delimiter (no output)

 The log ID format %L produces a unique id for a connection
 or request. This can be used to correlate which log lines belong to the
 same connection or request, which request happens on which connection.
 A %L format string is also available in
 mod_log_config, to allow to correlate access log entries
 with error log lines. If mod_unique_id is loaded, its
 unique id will be used as log ID for requests.

 #Example (default format for threaded MPMs)
ErrorLogFormat "[%{u}t] [%-m:%l] [pid %P:tid %T] %7F: %E: [client\ %a] %M% ,\ referer\ %{Referer}i"

 This would result in error messages such as:

	
 [Thu May 12 08:28:57.652118 2011] [core:error] [pid 8777:tid 4326490112] [client ::1:58619] File does not exist: /usr/local/apache2/htdocs/favicon.ico

 Notice that, as discussed above, some fields are omitted
 entirely because they are not defined.

 #Example (similar to the 2.2.x format)
ErrorLogFormat "[%t] [%l] %7F: %E: [client\ %a] %M% ,\ referer\ %{Referer}i"

 #Advanced example with request/connection log IDs
ErrorLogFormat "[%{uc}t] [%-m:%-l] [R:%L] [C:%{C}L] %7F: %E: %M"
ErrorLogFormat request "[%{uc}t] [R:%L] Request %k on C:%{c}L pid:%P tid:%T"
ErrorLogFormat request "[%{uc}t] [R:%L] UA:'%+{User-Agent}i'"
ErrorLogFormat request "[%{uc}t] [R:%L] Referer:'%+{Referer}i'"
ErrorLogFormat connection "[%{uc}t] [C:%{c}L] local\ %a remote\ %A"

See also

	ErrorLog
	LogLevel
	Apache HTTP Server Log Files

ExtendedStatus Directive

	Description:	Keep track of extended status information for each
request
	Syntax:	ExtendedStatus On|Off
	Default:	ExtendedStatus Off[*]
	Context:	server config
	Status:	Core
	Module:	core

 This option tracks additional data per worker about the
 currently executing request, and a utilization summary; you
 can see these variables during runtime by configuring
 mod_status. Note that other modules may
 rely on this scoreboard.

 This setting applies to the entire server, and cannot be
 enabled or disabled on a virtualhost-by-virtualhost basis.
 The collection of extended status information can slow down
 the server. Also note that this setting cannot be changed
 during a graceful restart.

 Note that loading mod_status will change
 the default behavior to ExtendedStatus On, while other
 third party modules may do the same. Such modules rely on
 collecting detailed information about the state of all workers.
 The default is changed by mod_status beginning
 with version 2.3.6; the previous default was always Off.

FileETag Directive

	Description:	File attributes used to create the ETag
HTTP response header for static files
	Syntax:	FileETag component ...
	Default:	FileETag MTime Size
	Context:	server config, virtual host, directory, .htaccess
	Override:	FileInfo
	Status:	Core
	Module:	core
	Compatibility:	The default used to be "INode MTime Size" in 2.3.14 and
earlier.

 The FileETag directive configures the file
 attributes that are used to create the ETag (entity
 tag) response header field when the document is based on a static file.
 (The ETag value is used in cache management to save
 network bandwidth.) The
 FileETag directive allows you to choose
 which of these -- if any -- should be used. The recognized keywords are:

 	INode
	The file's i-node number will be included in the calculation
	MTime
	The date and time the file was last modified will be included
	Size
	The number of bytes in the file will be included
	All
	All available fields will be used. This is equivalent to:
 FileETag INode MTime Size

	None
	If a document is file-based, no ETag field will be
 included in the response

 The INode, MTime, and Size
 keywords may be prefixed with either + or -,
 which allow changes to be made to the default setting inherited
 from a broader scope. Any keyword appearing without such a prefix
 immediately and completely cancels the inherited setting.

 If a directory's configuration includes
 FileETag INode MTime Size, and a
 subdirectory's includes FileETag -INode,
 the setting for that subdirectory (which will be inherited by
 any sub-subdirectories that don't override it) will be equivalent to
 FileETag MTime Size.

 Warning

 Do not change the default for directories or locations that have WebDAV
 enabled and use mod_dav_fs as a storage provider.
 mod_dav_fs uses MTime Size
 as a fixed format for ETag comparisons on conditional requests.
 These conditional requests will break if the ETag format is
 changed via FileETag.

 Server Side Includes

 An ETag is not generated for responses parsed by mod_include,
 since the response entity can change without a change of the INode, MTime, or Size
 of the static file with embedded SSI directives.

<Files> Directive

	Description:	Contains directives that apply to matched
filenames
	Syntax:	<Files filename> ... </Files>
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Core
	Module:	core

 The <Files> directive
 limits the scope of the enclosed directives by filename. It is comparable
 to the <Directory>
 and <Location>
 directives. It should be matched with a </Files>
 directive. The directives given within this section will be applied to
 any object with a basename (last component of filename) matching the
 specified filename. <Files>
 sections are processed in the order they appear in the
 configuration file, after the <Directory> sections and
 .htaccess files are read, but before <Location> sections. Note
 that <Files> can be nested
 inside <Directory> sections to restrict the
 portion of the filesystem they apply to.

 The filename argument should include a filename, or
 a wild-card string, where ? matches any single character,
 and * matches any sequences of characters.

 <Files "cat.html">
 # Insert stuff that applies to cat.html here
</Files>

<Files "?at.*">
 # This would apply to cat.html, bat.html, hat.php and so on.
</Files>

 Regular expressions
 can also be used, with the addition of the
 ~ character. For example:

 <Files ~ "\.(gif|jpe?g|png)$">
 #...
</Files>

 would match most common Internet graphics formats. <FilesMatch> is preferred,
 however.

 Note that unlike <Directory> and <Location> sections, <Files> sections can be used inside
 .htaccess files. This allows users to control access to
 their own files, at a file-by-file level.

See also

	How <Directory>, <Location>
 and <Files> sections work for an explanation of how these
 different sections are combined when a request is received

<FilesMatch> Directive

	Description:	Contains directives that apply to regular-expression matched
filenames
	Syntax:	<FilesMatch regex> ... </FilesMatch>
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Core
	Module:	core

 The <FilesMatch> directive
 limits the scope of the enclosed directives by filename, just as the
 <Files> directive
 does. However, it accepts a regular
 expression. For example:

<FilesMatch "\.(gif|jpe?g|png)$">
 # ...
</FilesMatch>

 would match most common Internet graphics formats.

 From 2.4.8 onwards, named groups and backreferences are captured and
 written to the environment with the corresponding name prefixed with
 "MATCH_" and in upper case. This allows elements of files to be referenced
 from within expressions and modules like
 mod_rewrite. In order to prevent confusion, numbered
 (unnamed) backreferences are ignored. Use named groups instead.

<FilesMatch ^(?<sitename>[^/]+)>
 require ldap-group cn=%{env:MATCH_SITENAME},ou=combined,o=Example
</FilesMatch>

See also

	How <Directory>, <Location>
 and <Files> sections work for an explanation of how these
 different sections are combined when a request is received

ForceType Directive

	Description:	Forces all matching files to be served with the specified
media type in the HTTP Content-Type header field
	Syntax:	ForceType media-type|None
	Context:	directory, .htaccess
	Override:	FileInfo
	Status:	Core
	Module:	core

 When placed into an .htaccess file or a
 <Directory>, or
 <Location> or
 <Files>
 section, this directive forces all matching files to be served
 with the content type identification given by
 media-type. For example, if you had a directory full of
 GIF files, but did not want to label them all with .gif,
 you might want to use:

 ForceType image/gif

 Note that this directive overrides other indirect media type
 associations defined in mime.types or via the
 AddType.

 You can also override more general
 ForceType settings
 by using the value of None:

 # force all files to be image/gif:
<Location /images>
 ForceType image/gif
</Location>

but normal mime-type associations here:
<Location /images/mixed>
 ForceType None
</Location>

 This directive primarily overrides the content types generated for
 static files served out of the filesystem. For resources other than
 static files, where the generator of the response typically specifies
 a Content-Type, this directive has no effect.

GprofDir Directive

	Description:	Directory to write gmon.out profiling data to.
	Syntax:	GprofDir /tmp/gprof/|/tmp/gprof/%
	Context:	server config, virtual host
	Status:	Core
	Module:	core

 When the server has been compiled with gprof profiling support,
 GprofDir causes gmon.out files to
 be written to the specified directory when the process exits. If the
 argument ends with a percent symbol ('%'), subdirectories are created
 for each process id.

 This directive currently only works with the prefork
 MPM.

HostnameLookups Directive

	Description:	Enables DNS lookups on client IP addresses
	Syntax:	HostnameLookups On|Off|Double
	Default:	HostnameLookups Off
	Context:	server config, virtual host, directory
	Status:	Core
	Module:	core

 This directive enables DNS lookups so that host names can be
 logged (and passed to CGIs/SSIs in REMOTE_HOST).
 The value Double refers to doing double-reverse
 DNS lookup. That is, after a reverse lookup is performed, a forward
 lookup is then performed on that result. At least one of the IP
 addresses in the forward lookup must match the original
 address. (In "tcpwrappers" terminology this is called
 PARANOID.)

 Regardless of the setting, when mod_authz_host is
 used for controlling access by hostname, a double reverse lookup
 will be performed. This is necessary for security. Note that the
 result of this double-reverse isn't generally available unless you
 set HostnameLookups Double. For example, if only
 HostnameLookups On and a request is made to an object
 that is protected by hostname restrictions, regardless of whether
 the double-reverse fails or not, CGIs will still be passed the
 single-reverse result in REMOTE_HOST.

 The default is Off in order to save the network
 traffic for those sites that don't truly need the reverse
 lookups done. It is also better for the end users because they
 don't have to suffer the extra latency that a lookup entails.
 Heavily loaded sites should leave this directive
 Off, since DNS lookups can take considerable
 amounts of time. The utility logresolve, compiled by
 default to the bin subdirectory of your installation
 directory, can be used to look up host names from logged IP addresses
 offline.

 Finally, if you have hostname-based Require
 directives, a hostname lookup will be performed regardless of
 the setting of HostnameLookups.

<If> Directive

	Description:	Contains directives that apply only if a condition is
satisfied by a request at runtime
	Syntax:	<If expression> ... </If>
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Core
	Module:	core

 The <If> directive
 evaluates an expression at runtime, and applies the enclosed
 directives if and only if the expression evaluates to true.
 For example:

 <If "-z req('Host')">

 would match HTTP/1.0 requests without a Host: header.
 Expressions may contain various shell-like operators for string
 comparison (==, !=, <, ...),
 integer comparison (-eq, -ne, ...),
 and others (-n, -z, -f, ...).
 It is also possible to use regular expressions,

 <If "%{QUERY_STRING} =~ /(delete|commit)=.*?elem/">

 shell-like pattern matches and many other operations. These operations
 can be done on request headers (req), environment variables
 (env), and a large number of other properties. The full
 documentation is available in Expressions in
 Apache HTTP Server.

 Only directives that support the directory context can be used within this configuration section.

See also

	Expressions in Apache HTTP Server,
for a complete reference and more examples.
	<ElseIf>
	<Else>
	How <Directory>, <Location>,
 <Files> sections work for an explanation of how these
 different sections are combined when a request is received.
 <If>,
 <ElseIf>, and
 <Else> are applied last.

<IfDefine> Directive

	Description:	Encloses directives that will be processed only
if a test is true at startup
	Syntax:	<IfDefine [!]parameter-name> ...
 </IfDefine>
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Core
	Module:	core

 The <IfDefine test>...</IfDefine>
 section is used to mark directives that are conditional. The
 directives within an <IfDefine>
 section are only processed if the test is true. If
 test is false, everything between the start and end markers is
 ignored.

 The test in the <IfDefine> section directive can be one of two forms:

 	parameter-name
	!parameter-name

 In the former case, the directives between the start and end
 markers are only processed if the parameter named
 parameter-name is defined. The second format reverses
 the test, and only processes the directives if
 parameter-name is not defined.

 The parameter-name argument is a define as given on the
 httpd command line via -Dparameter
 at the time the server was started or by the Define directive.

 <IfDefine> sections are
 nest-able, which can be used to implement simple
 multiple-parameter tests. Example:

 httpd -DReverseProxy -DUseCache -DMemCache ...

 <IfDefine ReverseProxy>
 LoadModule proxy_module modules/mod_proxy.so
 LoadModule proxy_http_module modules/mod_proxy_http.so
 <IfDefine UseCache>
 LoadModule cache_module modules/mod_cache.so
 <IfDefine MemCache>
 LoadModule mem_cache_module modules/mod_mem_cache.so
 </IfDefine>
 <IfDefine !MemCache>
 LoadModule cache_disk_module modules/mod_cache_disk.so
 </IfDefine>
 </IfDefine>
</IfDefine>

<IfModule> Directive

	Description:	Encloses directives that are processed conditional on the
presence or absence of a specific module
	Syntax:	<IfModule [!]module-file|module-identifier> ...
 </IfModule>
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Core
	Module:	core
	Compatibility:	Module identifiers are available in version 2.1 and
later.

 The <IfModule test>...</IfModule>
 section is used to mark directives that are conditional on the presence of
 a specific module. The directives within an <IfModule> section are only processed if the test
 is true. If test is false, everything between the start and
 end markers is ignored.

 The test in the <IfModule> section directive can be one of two forms:

 	module
	!module

 In the former case, the directives between the start and end
 markers are only processed if the module named module
 is included in Apache httpd -- either compiled in or
 dynamically loaded using LoadModule. The second format reverses the test,
 and only processes the directives if module is
 not included.

 The module argument can be either the module identifier or
 the file name of the module, at the time it was compiled. For example,
 rewrite_module is the identifier and
 mod_rewrite.c is the file name. If a module consists of
 several source files, use the name of the file containing the string
 STANDARD20_MODULE_STUFF.

 <IfModule> sections are
 nest-able, which can be used to implement simple multiple-module
 tests.

 This section should only be used if you need to have one
 configuration file that works whether or not a specific module
 is available. In normal operation, directives need not be
 placed in <IfModule>
 sections.

Include Directive

	Description:	Includes other configuration files from within
the server configuration files
	Syntax:	Include file-path|directory-path|wildcard
	Context:	server config, virtual host, directory
	Status:	Core
	Module:	core
	Compatibility:	Directory
wildcard matching available in 2.3.6 and later

 This directive allows inclusion of other configuration files
 from within the server configuration files.

 Shell-style (fnmatch()) wildcard characters can be used
 in the filename or directory parts of the path to include several files
 at once, in alphabetical order. In addition, if
 Include points to a directory, rather than a file,
 Apache httpd will read all files in that directory and any subdirectory.
 However, including entire directories is not recommended, because it is
 easy to accidentally leave temporary files in a directory that can cause
 httpd to fail. Instead, we encourage you to use the
 wildcard syntax shown below, to include files that match a particular
 pattern, such as *.conf, for example.

 The Include directive will
 fail with an error if a wildcard expression does not
 match any file. The IncludeOptional
 directive can be used if non-matching wildcards should be ignored.

 The file path specified may be an absolute path, or may be relative
 to the ServerRoot directory.

 Examples:

 Include /usr/local/apache2/conf/ssl.conf
Include /usr/local/apache2/conf/vhosts/*.conf

 Or, providing paths relative to your ServerRoot directory:

 Include conf/ssl.conf
Include conf/vhosts/*.conf

 Wildcards may be included in the directory or file portion of the
 path. This example will fail if there is no subdirectory in conf/vhosts
 that contains at least one *.conf file:

 Include conf/vhosts/*/*.conf

 Alternatively, the following command will just be ignored in case of
 missing files or directories:

 IncludeOptional conf/vhosts/*/*.conf

See also

	IncludeOptional
	apache2ctl

IncludeOptional Directive

	Description:	Includes other configuration files from within
the server configuration files
	Syntax:	IncludeOptional file-path|directory-path|wildcard
	Context:	server config, virtual host, directory
	Status:	Core
	Module:	core
	Compatibility:	Available in 2.3.6 and later

 This directive allows inclusion of other configuration files
 from within the server configuration files. It works identically to the
 Include directive, with the
 exception that if wildcards do not match any file or directory, the
 IncludeOptional directive will be
 silently ignored instead of causing an error.

See also

	Include
	apache2ctl

KeepAlive Directive

	Description:	Enables HTTP persistent connections
	Syntax:	KeepAlive On|Off
	Default:	KeepAlive On
	Context:	server config, virtual host
	Status:	Core
	Module:	core

 The Keep-Alive extension to HTTP/1.0 and the persistent
 connection feature of HTTP/1.1 provide long-lived HTTP sessions
 which allow multiple requests to be sent over the same TCP
 connection. In some cases this has been shown to result in an
 almost 50% speedup in latency times for HTML documents with
 many images. To enable Keep-Alive connections, set
 KeepAlive On.

 For HTTP/1.0 clients, Keep-Alive connections will only be
 used if they are specifically requested by a client. In
 addition, a Keep-Alive connection with an HTTP/1.0 client can
 only be used when the length of the content is known in
 advance. This implies that dynamic content such as CGI output,
 SSI pages, and server-generated directory listings will
 generally not use Keep-Alive connections to HTTP/1.0 clients.
 For HTTP/1.1 clients, persistent connections are the default
 unless otherwise specified. If the client requests it, chunked
 encoding will be used in order to send content of unknown
 length over persistent connections.

 When a client uses a Keep-Alive connection it will be counted
 as a single "request" for the MaxConnectionsPerChild directive, regardless
 of how many requests are sent using the connection.

See also

	MaxKeepAliveRequests

KeepAliveTimeout Directive

	Description:	Amount of time the server will wait for subsequent
requests on a persistent connection
	Syntax:	KeepAliveTimeout num[ms]
	Default:	KeepAliveTimeout 5
	Context:	server config, virtual host
	Status:	Core
	Module:	core

 The number of seconds Apache httpd will wait for a subsequent
 request before closing the connection. By adding a postfix of ms the
 timeout can be also set in milliseconds. Once a request has been
 received, the timeout value specified by the
 Timeout directive applies.

 Setting KeepAliveTimeout to a high value
 may cause performance problems in heavily loaded servers. The
 higher the timeout, the more server processes will be kept
 occupied waiting on connections with idle clients.

 In a name-based virtual host context, the value of the first
 defined virtual host best matching the local IP and port will be used.

<Limit> Directive

	Description:	Restrict enclosed access controls to only certain HTTP
methods
	Syntax:	<Limit method [method] ... > ...
 </Limit>
	Context:	directory, .htaccess
	Override:	AuthConfig, Limit
	Status:	Core
	Module:	core

 Access controls are normally effective for
 all access methods, and this is the usual
 desired behavior. In the general case, access control
 directives should not be placed within a
 <Limit> section.

 The purpose of the <Limit>
 directive is to restrict the effect of the access controls to the
 nominated HTTP methods. For all other methods, the access
 restrictions that are enclosed in the <Limit> bracket will have no
 effect. The following example applies the access control
 only to the methods POST, PUT, and
 DELETE, leaving all other methods unprotected:

 <Limit POST PUT DELETE>
 Require valid-user
</Limit>

 The method names listed can be one or more of: GET,
 POST, PUT, DELETE,
 CONNECT, OPTIONS,
 PATCH, PROPFIND, PROPPATCH,
 MKCOL, COPY, MOVE,
 LOCK, and UNLOCK. The method name is
 case-sensitive. If GET is used it will also
 restrict HEAD requests. The TRACE method
 cannot be limited (see TraceEnable).

 A <LimitExcept> section should always be
 used in preference to a <Limit>
 section when restricting access, since a <LimitExcept> section provides protection
 against arbitrary methods.

 The <Limit> and
 <LimitExcept>
 directives may be nested. In this case, each successive level of
 <Limit> or <LimitExcept> directives must
 further restrict the set of methods to which access controls apply.

 When using
 <Limit> or
 <LimitExcept> directives with
 the Require directive,
 note that the first Require
 to succeed authorizes the request, regardless of the presence of other
 Require directives.

 For example, given the following configuration, all users will
 be authorized for POST requests, and the
 Require group editors directive will be ignored
 in all cases:

 <LimitExcept GET>
 Require valid-user
</LimitExcept>
<Limit POST>
 Require group editors
</Limit>

<LimitExcept> Directive

	Description:	Restrict access controls to all HTTP methods
except the named ones
	Syntax:	<LimitExcept method [method] ... > ...
 </LimitExcept>
	Context:	directory, .htaccess
	Override:	AuthConfig, Limit
	Status:	Core
	Module:	core

 <LimitExcept> and
 </LimitExcept> are used to enclose
 a group of access control directives which will then apply to any
 HTTP access method not listed in the arguments;
 i.e., it is the opposite of a <Limit> section and can be used to control
 both standard and nonstandard/unrecognized methods. See the
 documentation for <Limit> for more details.

 For example:

 <LimitExcept POST GET>
 Require valid-user
</LimitExcept>

LimitInternalRecursion Directive

	Description:	Determine maximum number of internal redirects and nested
subrequests
	Syntax:	LimitInternalRecursion number [number]
	Default:	LimitInternalRecursion 10
	Context:	server config, virtual host
	Status:	Core
	Module:	core

 An internal redirect happens, for example, when using the Action directive, which internally
 redirects the original request to a CGI script. A subrequest is Apache httpd's
 mechanism to find out what would happen for some URI if it were requested.
 For example, mod_dir uses subrequests to look for the
 files listed in the DirectoryIndex
 directive.

 LimitInternalRecursion prevents the server
 from crashing when entering an infinite loop of internal redirects or
 subrequests. Such loops are usually caused by misconfigurations.

 The directive stores two different limits, which are evaluated on
 per-request basis. The first number is the maximum number of
 internal redirects, that may follow each other. The second number
 determines, how deep subrequests may be nested. If you specify only one
 number, it will be assigned to both limits.

 LimitInternalRecursion 5

LimitRequestBody Directive

	Description:	Restricts the total size of the HTTP request body sent
from the client
	Syntax:	LimitRequestBody bytes
	Default:	LimitRequestBody 0
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Core
	Module:	core

 This directive specifies the number of bytes from 0
 (meaning unlimited) to 2147483647 (2GB) that are allowed in a
 request body. See the note below for the limited applicability
 to proxy requests.

 The LimitRequestBody directive allows
 the user to set a limit on the allowed size of an HTTP request
 message body within the context in which the directive is given
 (server, per-directory, per-file or per-location). If the client
 request exceeds that limit, the server will return an error
 response instead of servicing the request. The size of a normal
 request message body will vary greatly depending on the nature of
 the resource and the methods allowed on that resource. CGI scripts
 typically use the message body for retrieving form information.
 Implementations of the PUT method will require
 a value at least as large as any representation that the server
 wishes to accept for that resource.

 This directive gives the server administrator greater
 control over abnormal client request behavior, which may be
 useful for avoiding some forms of denial-of-service
 attacks.

 If, for example, you are permitting file upload to a particular
 location, and wish to limit the size of the uploaded file to 100K,
 you might use the following directive:

 LimitRequestBody 102400

 For a full description of how this directive is interpreted by
 proxy requests, see the mod_proxy documentation.

LimitRequestFields Directive

	Description:	Limits the number of HTTP request header fields that
will be accepted from the client
	Syntax:	LimitRequestFields number
	Default:	LimitRequestFields 100
	Context:	server config, virtual host
	Status:	Core
	Module:	core

 Number is an integer from 0 (meaning unlimited) to
 32767. The default value is defined by the compile-time
 constant DEFAULT_LIMIT_REQUEST_FIELDS (100 as
 distributed).

 The LimitRequestFields directive allows
 the server administrator to modify the limit on the number of
 request header fields allowed in an HTTP request. A server needs
 this value to be larger than the number of fields that a normal
 client request might include. The number of request header fields
 used by a client rarely exceeds 20, but this may vary among
 different client implementations, often depending upon the extent
 to which a user has configured their browser to support detailed
 content negotiation. Optional HTTP extensions are often expressed
 using request header fields.

 This directive gives the server administrator greater
 control over abnormal client request behavior, which may be
 useful for avoiding some forms of denial-of-service attacks.
 The value should be increased if normal clients see an error
 response from the server that indicates too many fields were
 sent in the request.

 For example:

 LimitRequestFields 50

 Warning

 When name-based virtual hosting is used, the value for this
 directive is taken from the default (first-listed) virtual host for the
 local IP and port combination.

LimitRequestFieldSize Directive

	Description:	Limits the size of the HTTP request header allowed from the
client
	Syntax:	LimitRequestFieldSize bytes
	Default:	LimitRequestFieldSize 8190
	Context:	server config, virtual host
	Status:	Core
	Module:	core

 This directive specifies the number of bytes
 that will be allowed in an HTTP request header.

 The LimitRequestFieldSize directive
 allows the server administrator to set the limit
 on the allowed size of an HTTP request header field. A server
 needs this value to be large enough to hold any one header field
 from a normal client request. The size of a normal request header
 field will vary greatly among different client implementations,
 often depending upon the extent to which a user has configured
 their browser to support detailed content negotiation. SPNEGO
 authentication headers can be up to 12392 bytes.

 This directive gives the server administrator greater
 control over abnormal client request behavior, which may be
 useful for avoiding some forms of denial-of-service attacks.

 For example:

 LimitRequestFieldSize 4094

 Under normal conditions, the value should not be changed from
 the default.

 Warning

 When name-based virtual hosting is used, the value for this
 directive is taken from the default (first-listed) virtual host best
 matching the current IP address and port combination.

LimitRequestLine Directive

	Description:	Limit the size of the HTTP request line that will be accepted
from the client
	Syntax:	LimitRequestLine bytes
	Default:	LimitRequestLine 8190
	Context:	server config, virtual host
	Status:	Core
	Module:	core

 This directive sets the number of bytes that will be
 allowed on the HTTP request-line.

 The LimitRequestLine directive allows
 the server administrator to set the limit on the allowed size
 of a client's HTTP request-line. Since the request-line consists of the
 HTTP method, URI, and protocol version, the
 LimitRequestLine directive places a
 restriction on the length of a request-URI allowed for a request
 on the server. A server needs this value to be large enough to
 hold any of its resource names, including any information that
 might be passed in the query part of a GET request.

 This directive gives the server administrator greater
 control over abnormal client request behavior, which may be
 useful for avoiding some forms of denial-of-service attacks.

 For example:

 LimitRequestLine 4094

 Under normal conditions, the value should not be changed from
 the default.

 Warning

 When name-based virtual hosting is used, the value for this
 directive is taken from the default (first-listed) virtual host best
 matching the current IP address and port combination.

LimitXMLRequestBody Directive

	Description:	Limits the size of an XML-based request body
	Syntax:	LimitXMLRequestBody bytes
	Default:	LimitXMLRequestBody 1000000
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Core
	Module:	core

 Limit (in bytes) on maximum size of an XML-based request
 body. A value of 0 will disable any checking.

 Example:

 LimitXMLRequestBody 0

<Location> Directive

	Description:	Applies the enclosed directives only to matching
URLs
	Syntax:	<Location
 URL-path|URL> ... </Location>
	Context:	server config, virtual host
	Status:	Core
	Module:	core

 The <Location> directive
 limits the scope of the enclosed directives by URL. It is similar to the
 <Directory>
 directive, and starts a subsection which is terminated with a
 </Location> directive. <Location> sections are processed in the
 order they appear in the configuration file, after the <Directory> sections and
 .htaccess files are read, and after the <Files> sections.

 <Location> sections operate
 completely outside the filesystem. This has several consequences.
 Most importantly, <Location>
 directives should not be used to control access to filesystem
 locations. Since several different URLs may map to the same
 filesystem location, such access controls may by circumvented.

 The enclosed directives will be applied to the request if the path component
 of the URL meets any of the following criteria:

 	The specified location matches exactly the path component of the URL.

	The specified location, which ends in a forward slash, is a prefix
 of the path component of the URL (treated as a context root).

	The specified location, with the addition of a trailing slash, is a
 prefix of the path component of the URL (also treated as a context root).

 In the example below, where no trailing slash is used, requests to
 /private1, /private1/ and /private1/file.txt will have the enclosed
 directives applied, but /private1other would not.

 <Location /private1>
 # ...
</Location>

 In the example below, where a trailing slash is used, requests to
 /private2/ and /private2/file.txt will have the enclosed
 directives applied, but /private2 and /private2other would not.

 <Location /private2/>
 # ...
</Location>

 When to use <Location>

 Use <Location> to apply
 directives to content that lives outside the filesystem. For
 content that lives in the filesystem, use <Directory> and <Files>. An exception is
 <Location />, which is an easy way to
 apply a configuration to the entire server.

 For all origin (non-proxy) requests, the URL to be matched is a
 URL-path of the form /path/. No scheme, hostname,
 port, or query string may be included. For proxy requests, the
 URL to be matched is of the form
 scheme://servername/path, and you must include the
 prefix.

 The URL may use wildcards. In a wild-card string, ? matches
 any single character, and * matches any sequences of
 characters. Neither wildcard character matches a / in the URL-path.

 Regular expressions
 can also be used, with the addition of the ~
 character. For example:

 <Location ~ "/(extra|special)/data">
 #...
</Location>

 would match URLs that contained the substring /extra/data
 or /special/data. The directive <LocationMatch> behaves
 identical to the regex version of <Location>, and is preferred, for the
 simple reason that ~ is hard to distinguish from
 - in many fonts.

 The <Location>
 functionality is especially useful when combined with the
 SetHandler
 directive. For example, to enable status requests, but allow them
 only from browsers at example.com, you might use:

 <Location /status>
 SetHandler server-status
 Require host example.com
</Location>

 Note about / (slash)

 The slash character has special meaning depending on where in a
 URL it appears. People may be used to its behavior in the filesystem
 where multiple adjacent slashes are frequently collapsed to a single
 slash (i.e., /home///foo is the same as
 /home/foo). In URL-space this is not necessarily true.
 The <LocationMatch>
 directive and the regex version of <Location> require you to explicitly specify multiple
 slashes if that is your intention.

 For example, <LocationMatch ^/abc> would match
 the request URL /abc but not the request URL
 //abc. The (non-regex) <Location> directive behaves similarly when used for
 proxy requests. But when (non-regex) <Location> is used for non-proxy requests it will
 implicitly match multiple slashes with a single slash. For example,
 if you specify <Location /abc/def> and the
 request is to /abc//def then it will match.

See also

	How <Directory>, <Location>
 and <Files> sections work for an explanation of how these
 different sections are combined when a request is received.
	LocationMatch

<LocationMatch> Directive

	Description:	Applies the enclosed directives only to regular-expression
matching URLs
	Syntax:	<LocationMatch
 regex> ... </LocationMatch>
	Context:	server config, virtual host
	Status:	Core
	Module:	core

 The <LocationMatch> directive
 limits the scope of the enclosed directives by URL, in an identical manner
 to <Location>. However,
 it takes a regular expression
 as an argument instead of a simple string. For example:

 <LocationMatch "/(extra|special)/data">
 # ...
</LocationMatch>

 would match URLs that contained the substring /extra/data
 or /special/data.

 From 2.4.8 onwards, named groups and backreferences are captured and
 written to the environment with the corresponding name prefixed with
 "MATCH_" and in upper case. This allows elements of URLs to be referenced
 from within expressions and modules like
 mod_rewrite. In order to prevent confusion, numbered
 (unnamed) backreferences are ignored. Use named groups instead.

<LocationMatch ^/combined/(?<sitename>[^/]+)>
 require ldap-group cn=%{env:MATCH_SITENAME},ou=combined,o=Example
</LocationMatch>

See also

	How <Directory>, <Location>
 and <Files> sections work for an explanation of how these
 different sections are combined when a request is received

LogLevel Directive

	Description:	Controls the verbosity of the ErrorLog
	Syntax:	LogLevel [module:]level
 [module:level] ...

	Default:	LogLevel warn
	Context:	server config, virtual host, directory
	Status:	Core
	Module:	core
	Compatibility:	Per-module and per-directory configuration is available in
 Apache HTTP Server 2.3.6 and later

 LogLevel adjusts the verbosity of the
 messages recorded in the error logs (see ErrorLog directive). The following
 levels are available, in order of decreasing
 significance:

 	Level 	Description 	Example
	emerg 	Emergencies - system is unusable.	"Child cannot open lock file. Exiting"
	alert 	Action must be taken immediately.	"getpwuid: couldn't determine user name from uid"
	crit 	Critical Conditions.	"socket: Failed to get a socket, exiting child"
	error 	Error conditions.	"Premature end of script headers"
	warn 	Warning conditions.	"child process 1234 did not exit, sending another
 SIGHUP"
	notice 	Normal but significant condition.	"httpd: caught SIGBUS, attempting to dump core in
 ..."
	info 	Informational.	"Server seems busy, (you may need to increase
 StartServers, or Min/MaxSpareServers)..."
	debug 	Debug-level messages	"Opening config file ..."
	trace1 	Trace messages	"proxy: FTP: control connection complete"
	trace2 	Trace messages	"proxy: CONNECT: sending the CONNECT request to the remote proxy"
	trace3 	Trace messages	"openssl: Handshake: start"
	trace4 	Trace messages	"read from buffered SSL brigade, mode 0, 17 bytes"
	trace5 	Trace messages	"map lookup FAILED: map=rewritemap key=keyname"
	trace6 	Trace messages	"cache lookup FAILED, forcing new map lookup"
	trace7 	Trace messages, dumping large amounts of data	"| 0000: 02 23 44 30 13 40 ac 34 df 3d bf 9a 19 49 39 15 |"
	trace8 	Trace messages, dumping large amounts of data	"| 0000: 02 23 44 30 13 40 ac 34 df 3d bf 9a 19 49 39 15 |"

 When a particular level is specified, messages from all
 other levels of higher significance will be reported as well.
 E.g., when LogLevel info is specified,
 then messages with log levels of notice and
 warn will also be posted.

 Using a level of at least crit is
 recommended.

 For example:

 LogLevel notice

 Note

 When logging to a regular file messages of the level
 notice cannot be suppressed and thus are always
 logged. However, this doesn't apply when logging is done
 using syslog.

 Specifying a level without a module name will reset the level
 for all modules to that level. Specifying a level with a module
 name will set the level for that module only. It is possible to
 use the module source file name, the module identifier, or the
 module identifier with the trailing _module omitted
 as module specification. This means the following three specifications
 are equivalent:

 LogLevel info ssl:warn
LogLevel info mod_ssl.c:warn
LogLevel info ssl_module:warn

 It is also possible to change the level per directory:

 LogLevel info
<Directory "/usr/local/apache/htdocs/app">
 LogLevel debug
</Directory>

 Per directory loglevel configuration only affects messages that are
	logged after the request has been parsed and that are associated with
	the request. Log messages which are associated with the connection or
	the server are not affected.

See also

	ErrorLog
	ErrorLogFormat
	Apache HTTP Server Log Files

MaxKeepAliveRequests Directive

	Description:	Number of requests allowed on a persistent
connection
	Syntax:	MaxKeepAliveRequests number
	Default:	MaxKeepAliveRequests 100
	Context:	server config, virtual host
	Status:	Core
	Module:	core

 The MaxKeepAliveRequests directive
 limits the number of requests allowed per connection when
 KeepAlive is on. If it is
 set to 0, unlimited requests will be allowed. We
 recommend that this setting be kept to a high value for maximum
 server performance.

 For example:

 MaxKeepAliveRequests 500

MaxRangeOverlaps Directive

	Description:	Number of overlapping ranges (eg: 100-200,150-300) allowed before returning the complete
 resource
	Syntax:	MaxRangeOverlaps default | unlimited | none | number-of-ranges
	Default:	MaxRangeOverlaps 20
	Context:	server config, virtual host, directory
	Status:	Core
	Module:	core
	Compatibility:	Available in Apache HTTP Server 2.3.15 and later

 The MaxRangeOverlaps directive
 limits the number of overlapping HTTP ranges the server is willing to
 return to the client. If more overlapping ranges than permitted are requested,
 the complete resource is returned instead.

 	default
	Limits the number of overlapping ranges to a compile-time default of 20.
	none
	No overlapping Range headers are allowed.
	unlimited
	The server does not limit the number of overlapping ranges it is
 willing to satisfy.
	number-of-ranges
	A positive number representing the maximum number of overlapping ranges the
 server is willing to satisfy.

MaxRangeReversals Directive

	Description:	Number of range reversals (eg: 100-200,50-70) allowed before returning the complete
 resource
	Syntax:	MaxRangeReversals default | unlimited | none | number-of-ranges
	Default:	MaxRangeReversals 20
	Context:	server config, virtual host, directory
	Status:	Core
	Module:	core
	Compatibility:	Available in Apache HTTP Server 2.3.15 and later

 The MaxRangeReversals directive
 limits the number of HTTP Range reversals the server is willing to
 return to the client. If more ranges reversals than permitted are requested,
 the complete resource is returned instead.

 	default
	Limits the number of range reversals to a compile-time default of 20.
	none
	No Range reversals headers are allowed.
	unlimited
	The server does not limit the number of range reversals it is
 willing to satisfy.
	number-of-ranges
	A positive number representing the maximum number of range reversals the
 server is willing to satisfy.

MaxRanges Directive

	Description:	Number of ranges allowed before returning the complete
resource
	Syntax:	MaxRanges default | unlimited | none | number-of-ranges
	Default:	MaxRanges 200
	Context:	server config, virtual host, directory
	Status:	Core
	Module:	core
	Compatibility:	Available in Apache HTTP Server 2.3.15 and later

 The MaxRanges directive
 limits the number of HTTP ranges the server is willing to
 return to the client. If more ranges than permitted are requested,
 the complete resource is returned instead.

 	default
	Limits the number of ranges to a compile-time default of 200.
	none
	Range headers are ignored.
	unlimited
	The server does not limit the number of ranges it is
 willing to satisfy.
	number-of-ranges
	A positive number representing the maximum number of ranges the
 server is willing to satisfy.

MergeTrailers Directive

	Description:	Determins whether trailers are merged into headers
	Syntax:	MergeTrailers [on|off]
	Default:	MergeTrailers off
	Context:	server config, virtual host
	Status:	Core
	Module:	core
	Compatibility:	2.4.10 and later

 This directive controls whether HTTP trailers are copied into the
 internal representation of HTTP headers. This mergeing occurs when the
 request body has been completely consumed, long after most header
 processing would have a chance to examine or modify request headers.

 This option is provided for compatibility with releases prior to 2.4.10,
 where trailers were always merged.

Mutex Directive

	Description:	Configures mutex mechanism and lock file directory for all
or specified mutexes
	Syntax:	Mutex mechanism [default|mutex-name] ... [OmitPID]
	Default:	Mutex default
	Context:	server config
	Status:	Core
	Module:	core
	Compatibility:	Available in Apache HTTP Server 2.3.4 and later

 The Mutex directive sets the mechanism,
 and optionally the lock file location, that httpd and modules use
 to serialize access to resources. Specify default as
 the first argument to change the settings for all mutexes; specify
 a mutex name (see table below) as the first argument to override
 defaults only for that mutex.

 The Mutex directive is typically used in
 the following exceptional situations:

 	change the mutex mechanism when the default mechanism selected
 by APR has a functional or performance
 problem
	change the directory used by file-based mutexes when the
 default directory does not support locking

 Supported modules

 This directive only configures mutexes which have been registered
 with the core server using the ap_mutex_register() API.
 All modules bundled with httpd support the Mutex
 directive, but third-party modules may not. Consult the documentation
 of the third-party module, which must indicate the mutex name(s) which
 can be configured if this directive is supported.

 The following mutex mechanisms are available:

 	default | yes
 This selects the default locking implementation, as determined by
 APR. The default locking implementation can
 be displayed by running httpd with the
 -V option.

	none | no
 This effectively disables the mutex, and is only allowed for a
 mutex if the module indicates that it is a valid choice. Consult the
 module documentation for more information.

	posixsem
 This is a mutex variant based on a Posix semaphore.

 Warning

 The semaphore ownership is not recovered if a thread in the process
 holding the mutex segfaults, resulting in a hang of the web server.

	sysvsem
 This is a mutex variant based on a SystemV IPC semaphore.

 Warning

 It is possible to "leak" SysV semaphores if processes crash
 before the semaphore is removed.

	

 Security

 The semaphore API allows for a denial of service attack by any
 CGIs running under the same uid as the webserver (i.e.,
 all CGIs, unless you use something like suexec
 or cgiwrapper).

	

	sem
 This selects the "best" available semaphore implementation, choosing
 between Posix and SystemV IPC semaphores, in that order.

	pthread
 This is a mutex variant based on cross-process Posix thread
 mutexes.

 Warning

 On most systems, if a child process terminates abnormally while
 holding a mutex that uses this implementation, the server will deadlock
 and stop responding to requests. When this occurs, the server will
 require a manual restart to recover.

 Solaris is a notable exception as it provides a mechanism which
 usually allows the mutex to be recovered after a child process
 terminates abnormally while holding a mutex.

 If your system implements the
 pthread_mutexattr_setrobust_np() function, you may be able
 to use the pthread option safely.

	fcntl:/path/to/mutex
 This is a mutex variant where a physical (lock-)file and the
 fcntl() function are used as the mutex.

 Warning

 When multiple mutexes based on this mechanism are used within
 multi-threaded, multi-process environments, deadlock errors (EDEADLK)
 can be reported for valid mutex operations if fcntl()
 is not thread-aware, such as on Solaris.

	

	flock:/path/to/mutex
 This is similar to the fcntl:/path/to/mutex method
 with the exception that the flock() function is used to
 provide file locking.

	file:/path/to/mutex
 This selects the "best" available file locking implementation,
 choosing between fcntl and flock, in that
 order.

 Most mechanisms are only available on selected platforms, where the
 underlying platform and APR support it. Mechanisms
 which aren't available on all platforms are posixsem,
 sysvsem, sem, pthread, fcntl,
 flock, and file.

 With the file-based mechanisms fcntl and flock,
 the path, if provided, is a directory where the lock file will be created.
 The default directory is httpd's run-time file directory relative to
 ServerRoot. Always use a local disk
 filesystem for /path/to/mutex and never a directory residing
 on a NFS- or AFS-filesystem. The basename of the file will be the mutex
 type, an optional instance string provided by the module, and unless the
 OmitPID keyword is specified, the process id of the httpd
 parent process will be appended to to make the file name unique, avoiding
 conflicts when multiple httpd instances share a lock file directory. For
 example, if the mutex name is mpm-accept and the lock file
 directory is /var/httpd/locks, the lock file name for the
 httpd instance with parent process id 12345 would be
 /var/httpd/locks/mpm-accept.12345.

 Security

 It is best to avoid putting mutex files in a world-writable
 directory such as /var/tmp because someone could create
 a denial of service attack and prevent the server from starting by
 creating a lockfile with the same name as the one the server will try
 to create.

 The following table documents the names of mutexes used by httpd
 and bundled modules.

 	Mutex name	Module(s)	Protected resource
	mpm-accept	prefork and worker MPMs	incoming connections, to avoid the thundering herd problem;
 for more information, refer to the
 performance tuning
 documentation
	authdigest-client	mod_auth_digest	client list in shared memory
	authdigest-opaque	mod_auth_digest	counter in shared memory
	ldap-cache	mod_ldap	LDAP result cache
	rewrite-map	mod_rewrite	communication with external mapping programs, to avoid
 intermixed I/O from multiple requests
	ssl-cache	mod_ssl	SSL session cache
	ssl-stapling	mod_ssl	OCSP stapling response cache
	watchdog-callback	mod_watchdog	callback function of a particular client module

 The OmitPID keyword suppresses the addition of the httpd
 parent process id from the lock file name.

 In the following example, the mutex mechanism for the MPM accept
 mutex will be changed from the compiled-in default to fcntl,
 with the associated lock file created in directory
 /var/httpd/locks. The mutex mechanism for all other mutexes
 will be changed from the compiled-in default to sysvsem.

 Mutex sysvsem default
Mutex fcntl:/var/httpd/locks mpm-accept

NameVirtualHost Directive

	Description:	DEPRECATED: Designates an IP address for name-virtual
hosting
	Syntax:	NameVirtualHost addr[:port]
	Context:	server config
	Status:	Core
	Module:	core

Prior to 2.3.11, NameVirtualHost was required
to instruct the server that a particular IP address and port combination
was usable as a name-based virtual host. In 2.3.11 and later,
any time an IP address and port combination is used in multiple virtual
hosts, name-based virtual hosting is automatically enabled for that address.

This directive currently has no effect.

See also

	Virtual Hosts
documentation

Options Directive

	Description:	Configures what features are available in a particular
directory
	Syntax:	Options
 [+|-]option [[+|-]option] ...
	Default:	Options FollowSymlinks
	Context:	server config, virtual host, directory, .htaccess
	Override:	Options
	Status:	Core
	Module:	core
	Compatibility:	The default was changed from All to FollowSymlinks in 2.3.11

 The Options directive controls which
 server features are available in a particular directory.

 option can be set to None, in which
 case none of the extra features are enabled, or one or more of
 the following:

 	All
	All options except for MultiViews.
	ExecCGI
	
 Execution of CGI scripts using mod_cgi
 is permitted.
	FollowSymLinks
	
 The server will follow symbolic links in this directory. This is
 the default setting.

 Even though the server follows the symlink it does not
 change the pathname used to match against <Directory> sections.

 The FollowSymLinks and
 SymLinksIfOwnerMatch Options work only in <Directory> sections or
 .htaccess files.

 Omitting this option should not be considered a security restriction,
 since symlink testing is subject to race conditions that make it
 circumventable.

	Includes
	
 Server-side includes provided by mod_include
 are permitted.
	IncludesNOEXEC
	

 Server-side includes are permitted, but the #exec
 cmd and #exec cgi are disabled. It is still
 possible to #include virtual CGI scripts from
 ScriptAliased
 directories.
	Indexes
	
 If a URL which maps to a directory is requested, and there
 is no DirectoryIndex
 (e.g., index.html) in that directory, then
 mod_autoindex will return a formatted listing
 of the directory.
	MultiViews
	
 Content negotiated
 "MultiViews" are allowed using
 mod_negotiation.
 Note
 This option gets ignored if set
 anywhere other than <Directory>, as mod_negotiation
 needs real resources to compare against and evaluate from.

	SymLinksIfOwnerMatch
	The server will only follow symbolic links for which the
 target file or directory is owned by the same user id as the
 link.

 Note

 The FollowSymLinks and
 SymLinksIfOwnerMatch Options work only in <Directory> sections or
 .htaccess files.

 This option should not be considered a security restriction,
 since symlink testing is subject to race conditions that make it
 circumventable.

 Normally, if multiple Options could
 apply to a directory, then the most specific one is used and
 others are ignored; the options are not merged. (See how sections are merged.)
 However if all the options on the
 Options directive are preceded by a
 + or - symbol, the options are
 merged. Any options preceded by a + are added to the
 options currently in force, and any options preceded by a
 - are removed from the options currently in
 force.

 Note

 Mixing Options with a + or
 - with those without is not valid syntax, and will be
 rejected during server startup by the syntax check with an abort.

 For example, without any + and - symbols:

 <Directory "/web/docs">
 Options Indexes FollowSymLinks
</Directory>

<Directory "/web/docs/spec">
 Options Includes
</Directory>

 then only Includes will be set for the
 /web/docs/spec directory. However if the second
 Options directive uses the + and
 - symbols:

 <Directory "/web/docs">
 Options Indexes FollowSymLinks
</Directory>

<Directory "/web/docs/spec">
 Options +Includes -Indexes
</Directory>

 then the options FollowSymLinks and
 Includes are set for the /web/docs/spec
 directory.

 Note

 Using -IncludesNOEXEC or
 -Includes disables server-side includes completely
 regardless of the previous setting.

 The default in the absence of any other settings is
 FollowSymlinks.

Protocol Directive

	Description:	Protocol for a listening socket
	Syntax:	Protocol protocol
	Context:	server config, virtual host
	Status:	Core
	Module:	core
	Compatibility:	Available in Apache 2.1.5 and later.
On Windows from Apache 2.3.3 and later.

 This directive specifies the protocol used for a specific listening socket.
 The protocol is used to determine which module should handle a request, and
 to apply protocol specific optimizations with the AcceptFilter
 directive.

 You only need to set the protocol if you are running on non-standard ports, otherwise http is assumed for port 80 and https for port 443.

 For example, if you are running https on a non-standard port, specify the protocol explicitly:

 Protocol https

 You can also specify the protocol using the Listen directive.

See also

	AcceptFilter
	Listen

RLimitCPU Directive

	Description:	Limits the CPU consumption of processes launched
by Apache httpd children
	Syntax:	RLimitCPU seconds|max [seconds|max]
	Default:	Unset; uses operating system defaults
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Core
	Module:	core

 Takes 1 or 2 parameters. The first parameter sets the soft
 resource limit for all processes and the second parameter sets
 the maximum resource limit. Either parameter can be a number,
 or max to indicate to the server that the limit should
 be set to the maximum allowed by the operating system
 configuration. Raising the maximum resource limit requires that
 the server is running as root, or in the initial startup
 phase.

 This applies to processes forked off from Apache httpd children
 servicing requests, not the Apache httpd children themselves. This
 includes CGI scripts and SSI exec commands, but not any
 processes forked off from the Apache httpd parent such as piped
 logs.

 CPU resource limits are expressed in seconds per
 process.

See also

	RLimitMEM
	RLimitNPROC

RLimitMEM Directive

	Description:	Limits the memory consumption of processes launched
by Apache httpd children
	Syntax:	RLimitMEM bytes|max [bytes|max]
	Default:	Unset; uses operating system defaults
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Core
	Module:	core

 Takes 1 or 2 parameters. The first parameter sets the soft
 resource limit for all processes and the second parameter sets
 the maximum resource limit. Either parameter can be a number,
 or max to indicate to the server that the limit should
 be set to the maximum allowed by the operating system
 configuration. Raising the maximum resource limit requires that
 the server is running as root, or in the initial startup
 phase.

 This applies to processes forked off from Apache httpd children
 servicing requests, not the Apache httpd children themselves. This
 includes CGI scripts and SSI exec commands, but not any
 processes forked off from the Apache httpd parent such as piped
 logs.

 Memory resource limits are expressed in bytes per
 process.

See also

	RLimitCPU
	RLimitNPROC

RLimitNPROC Directive

	Description:	Limits the number of processes that can be launched by
processes launched by Apache httpd children
	Syntax:	RLimitNPROC number|max [number|max]
	Default:	Unset; uses operating system defaults
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Core
	Module:	core

 Takes 1 or 2 parameters. The first parameter sets the soft
 resource limit for all processes and the second parameter sets
 the maximum resource limit. Either parameter can be a number,
 or max to indicate to the server that the limit
 should be set to the maximum allowed by the operating system
 configuration. Raising the maximum resource limit requires that
 the server is running as root, or in the initial startup
 phase.

 This applies to processes forked off from Apache httpd children
 servicing requests, not the Apache httpd children themselves. This
 includes CGI scripts and SSI exec commands, but not any
 processes forked off from the Apache httpd parent such as piped
 logs.

 Process limits control the number of processes per user.

 Note

 If CGI processes are not running
 under user ids other than the web server user id, this directive
 will limit the number of processes that the server itself can
 create. Evidence of this situation will be indicated by
 cannot fork messages in the
 error_log.

See also

	RLimitMEM
	RLimitCPU

ScriptInterpreterSource Directive

	Description:	Technique for locating the interpreter for CGI
scripts
	Syntax:	ScriptInterpreterSource Registry|Registry-Strict|Script
	Default:	ScriptInterpreterSource Script
	Context:	server config, virtual host, directory, .htaccess
	Override:	FileInfo
	Status:	Core
	Module:	core
	Compatibility:	Win32 only.

 This directive is used to control how Apache httpd finds the
 interpreter used to run CGI scripts. The default setting is
 Script. This causes Apache httpd to use the interpreter pointed to
 by the shebang line (first line, starting with #!) in the
 script. On Win32 systems this line usually looks like:

 #!C:/Perl/bin/perl.exe

 or, if perl is in the PATH, simply:

 #!perl

 Setting ScriptInterpreterSource Registry will
 cause the Windows Registry tree HKEY_CLASSES_ROOT to be
 searched using the script file extension (e.g., .pl) as a
 search key. The command defined by the registry subkey
 Shell\ExecCGI\Command or, if it does not exist, by the subkey
 Shell\Open\Command is used to open the script file. If the
 registry keys cannot be found, Apache httpd falls back to the behavior of the
 Script option.

 Security

 Be careful when using ScriptInterpreterSource
 Registry with ScriptAlias'ed directories, because
 Apache httpd will try to execute every file within this
 directory. The Registry setting may cause undesired
 program calls on files which are typically not executed. For
 example, the default open command on .htm files on
 most Windows systems will execute Microsoft Internet Explorer, so
 any HTTP request for an .htm file existing within the
 script directory would start the browser in the background on the
 server. This is a good way to crash your system within a minute or
 so.

 The option Registry-Strict which is new in Apache HTTP Server
 2.0 does the same thing as Registry but uses only the
 subkey Shell\ExecCGI\Command. The
 ExecCGI key is not a common one. It must be
 configured manually in the windows registry and hence prevents
 accidental program calls on your system.

SeeRequestTail Directive

	Description:	Determine if mod_status displays the first 63 characters
of a request or the last 63, assuming the request itself is greater than
63 chars.
	Syntax:	SeeRequestTail On|Off
	Default:	SeeRequestTail Off
	Context:	server config
	Status:	Core
	Module:	core
	Compatibility:	Available in Apache httpd 2.2.7 and later.

 mod_status with ExtendedStatus On
 displays the actual request being handled.
 For historical purposes, only 63 characters of the request
 are actually stored for display purposes. This directive
 controls whether the 1st 63 characters are stored (the previous
 behavior and the default) or if the last 63 characters are. This
 is only applicable, of course, if the length of the request is
 64 characters or greater.

 If Apache httpd is handling GET /disk1/storage/apache/htdocs/images/imagestore1/food/apples.jpg HTTP/1.1 mod_status displays as follows:

 	Off (default)	GET /disk1/storage/apache/htdocs/images/imagestore1/food/apples
	On	orage/apache/htdocs/images/imagestore1/food/apples.jpg HTTP/1.1

ServerAdmin Directive

	Description:	Email address that the server includes in error
messages sent to the client
	Syntax:	ServerAdmin email-address|URL
	Context:	server config, virtual host
	Status:	Core
	Module:	core

 The ServerAdmin sets the contact address
 that the server includes in any error messages it returns to the
 client. If the httpd doesn't recognize the supplied argument
 as an URL, it
 assumes, that it's an email-address and prepends it with
 mailto: in hyperlink targets. However, it's recommended to
 actually use an email address, since there are a lot of CGI scripts that
 make that assumption. If you want to use an URL, it should point to another
 server under your control. Otherwise users may not be able to contact you in
 case of errors.

 It may be worth setting up a dedicated address for this, e.g.

 ServerAdmin www-admin@foo.example.com

 as users do not always mention that they are talking about the
 server!

ServerAlias Directive

	Description:	Alternate names for a host used when matching requests
to name-virtual hosts
	Syntax:	ServerAlias hostname [hostname] ...
	Context:	virtual host
	Status:	Core
	Module:	core

 The ServerAlias directive sets the
 alternate names for a host, for use with name-based virtual hosts. The
 ServerAlias may include wildcards, if appropriate.

 <VirtualHost *:80>
 ServerName server.example.com
 ServerAlias server server2.example.com server2
 ServerAlias *.example.com
 UseCanonicalName Off
 # ...
</VirtualHost>

 Name-based virtual hosts for the best-matching set of <virtualhost>s are processed
 in the order they appear in the configuration. The first matching ServerName or ServerAlias is used, with no different precedence for wildcards
 (nor for ServerName vs. ServerAlias).

 The complete list of names in the VirtualHost
 directive are treated just like a (non wildcard)
 ServerAlias.

See also

	UseCanonicalName
	Apache HTTP Server Virtual Host documentation

ServerName Directive

	Description:	Hostname and port that the server uses to identify
itself
	Syntax:	ServerName [scheme://]fully-qualified-domain-name[:port]
	Context:	server config, virtual host
	Status:	Core
	Module:	core

 The ServerName directive sets the
 request scheme, hostname and
 port that the server uses to identify itself. This is used when
 creating redirection URLs.

 Additionally, ServerName is used (possibly
 in conjunction with ServerAlias) to uniquely
 identify a virtual host, when using name-based virtual hosts.

 For example, if the name of the
 machine hosting the web server is simple.example.com,
 but the machine also has the DNS alias www.example.com
 and you wish the web server to be so identified, the following
 directive should be used:

 ServerName www.example.com

 The ServerName directive
 may appear anywhere within the definition of a server. However,
 each appearance overrides the previous appearance (within that
 server).

 If no ServerName is specified, then the
 server attempts to deduce the hostname by performing a reverse
 lookup on the IP address. If no port is specified in the
 ServerName, then the server will use the
 port from the incoming request. For optimal reliability and
 predictability, you should specify an explicit hostname and port
 using the ServerName directive.

 If you are using name-based virtual hosts,
 the ServerName inside a
 <VirtualHost>
 section specifies what hostname must appear in the request's
 Host: header to match this virtual host.

 Sometimes, the server runs behind a device that processes SSL,
 such as a reverse proxy, load balancer or SSL offload
 appliance. When this is the case, specify the
 https:// scheme and the port number to which the
 clients connect in the ServerName directive
 to make sure that the server generates the correct
 self-referential URLs.

 See the description of the
 UseCanonicalName and
 UseCanonicalPhysicalPort directives for
 settings which determine whether self-referential URLs (e.g., by the
 mod_dir module) will refer to the
 specified port, or to the port number given in the client's request.

 Failure to set ServerName to a name that
 your server can resolve to an IP address will result in a startup
 warning. httpd will then use whatever hostname it can
 determine, using the system's hostname command. This
 will almost never be the hostname you actually want.

 httpd: Could not reliably determine the server's fully qualified domain name, using rocinante.local for ServerName

See also

	Issues Regarding DNS and
 Apache HTTP Server
	Apache HTTP Server virtual host
 documentation
	UseCanonicalName
	UseCanonicalPhysicalPort
	ServerAlias

ServerPath Directive

	Description:	Legacy URL pathname for a name-based virtual host that
is accessed by an incompatible browser
	Syntax:	ServerPath URL-path
	Context:	virtual host
	Status:	Core
	Module:	core

 The ServerPath directive sets the legacy
 URL pathname for a host, for use with name-based virtual hosts.

See also

	Apache HTTP Server Virtual Host documentation

ServerRoot Directive

	Description:	Base directory for the server installation
	Syntax:	ServerRoot directory-path
	Default:	ServerRoot /usr/local/apache
	Context:	server config
	Status:	Core
	Module:	core

 The ServerRoot directive sets the
 directory in which the server lives. Typically it will contain the
 subdirectories conf/ and logs/. Relative
 paths in other configuration directives (such as Include or LoadModule, for example) are taken as
 relative to this directory.

 ServerRoot "/home/httpd"

 The default location of ServerRoot may be
 modified by using the --prefix argument to
 configure, and
 most third-party distributions of the server have a different
 default location from the one listed above.

See also

	the -d
 option to httpd
	the
 security tips for information on how to properly set
 permissions on the ServerRoot

ServerSignature Directive

	Description:	Configures the footer on server-generated documents
	Syntax:	ServerSignature On|Off|EMail
	Default:	ServerSignature Off
	Context:	server config, virtual host, directory, .htaccess
	Override:	All
	Status:	Core
	Module:	core

 The ServerSignature directive allows the
 configuration of a trailing footer line under server-generated
 documents (error messages, mod_proxy ftp directory
 listings, mod_info output, ...). The reason why you
 would want to enable such a footer line is that in a chain of proxies,
 the user often has no possibility to tell which of the chained servers
 actually produced a returned error message.

 The Off
 setting, which is the default, suppresses the footer line (and is
 therefore compatible with the behavior of Apache-1.2 and
 below). The On setting simply adds a line with the
 server version number and ServerName of the serving virtual host,
 and the EMail setting additionally creates a
 "mailto:" reference to the ServerAdmin of the referenced
 document.

 After version 2.0.44, the details of the server version number
 presented are controlled by the ServerTokens directive.

See also

	ServerTokens

ServerTokens Directive

	Description:	Configures the Server HTTP response
header
	Syntax:	ServerTokens Major|Minor|Min[imal]|Prod[uctOnly]|OS|Full
	Default:	ServerTokens Full
	Context:	server config
	Status:	Core
	Module:	core

 This directive controls whether Server response
 header field which is sent back to clients includes a
 description of the generic OS-type of the server as well as
 information about compiled-in modules.

 	ServerTokens Full (or not specified)
	Server sends (e.g.): Server: Apache/2.4.2
 (Unix) PHP/4.2.2 MyMod/1.2
	ServerTokens Prod[uctOnly]
	Server sends (e.g.): Server:
 Apache
	ServerTokens Major
	Server sends (e.g.): Server:
 Apache/2
	ServerTokens Minor
	Server sends (e.g.): Server:
 Apache/2.4
	ServerTokens Min[imal]
	Server sends (e.g.): Server:
 Apache/2.4.2
	ServerTokens OS
	Server sends (e.g.): Server: Apache/2.4.2
 (Unix)

 This setting applies to the entire server, and cannot be
 enabled or disabled on a virtualhost-by-virtualhost basis.

 After version 2.0.44, this directive also controls the
 information presented by the ServerSignature directive.

 Setting ServerTokens to less than
 minimal is not recommended because it makes it more
 difficult to debug interoperational problems. Also note that
 disabling the Server: header does nothing at all to make your
 server more secure; the idea of "security through obscurity"
 is a myth and leads to a false sense of safety.

See also

	ServerSignature

SetHandler Directive

	Description:	Forces all matching files to be processed by a
handler
	Syntax:	SetHandler handler-name|None
	Context:	server config, virtual host, directory, .htaccess
	Override:	FileInfo
	Status:	Core
	Module:	core

 When placed into an .htaccess file or a
 <Directory> or
 <Location>
 section, this directive forces all matching files to be parsed
 through the handler given by
 handler-name. For example, if you had a directory you
 wanted to be parsed entirely as imagemap rule files, regardless
 of extension, you might put the following into an
 .htaccess file in that directory:

 SetHandler imap-file

 Another example: if you wanted to have the server display a
 status report whenever a URL of
 http://servername/status was called, you might put
 the following into apache2.conf:

 <Location "/status">
 SetHandler server-status
</Location>

 You could also use this directive to configure a particular
 handler for files with a particular file extension. For example:

 <FilesMatch \.php$>
 SetHandler application/x-httpd-php
</FilesMatch>

 You can override an earlier defined SetHandler
 directive by using the value None.

 Note

 Because SetHandler overrides default handlers,
 normal behavior such as handling of URLs ending in a slash (/) as
 directories or index files is suppressed.

See also

	AddHandler

SetInputFilter Directive

	Description:	Sets the filters that will process client requests and POST
input
	Syntax:	SetInputFilter filter[;filter...]
	Context:	server config, virtual host, directory, .htaccess
	Override:	FileInfo
	Status:	Core
	Module:	core

 The SetInputFilter directive sets the
 filter or filters which will process client requests and POST
 input when they are received by the server. This is in addition to
 any filters defined elsewhere, including the
 AddInputFilter
 directive.

 If more than one filter is specified, they must be separated
 by semicolons in the order in which they should process the
 content.

See also

	Filters documentation

SetOutputFilter Directive

	Description:	Sets the filters that will process responses from the
server
	Syntax:	SetOutputFilter filter[;filter...]
	Context:	server config, virtual host, directory, .htaccess
	Override:	FileInfo
	Status:	Core
	Module:	core

 The SetOutputFilter directive sets the filters
 which will process responses from the server before they are
 sent to the client. This is in addition to any filters defined
 elsewhere, including the
 AddOutputFilter
 directive.

 For example, the following configuration will process all files
 in the /www/data/ directory for server-side
 includes.

 <Directory "/www/data/">
 SetOutputFilter INCLUDES
</Directory>

 If more than one filter is specified, they must be separated
 by semicolons in the order in which they should process the
 content.

See also

	Filters documentation

TimeOut Directive

	Description:	Amount of time the server will wait for
certain events before failing a request
	Syntax:	TimeOut seconds
	Default:	TimeOut 60
	Context:	server config, virtual host
	Status:	Core
	Module:	core

 The TimeOut directive defines the length
 of time Apache httpd will wait for I/O in various circumstances:

 	When reading data from the client, the length of time to
 wait for a TCP packet to arrive if the read buffer is
 empty.
	When writing data to the client, the length of time to wait
 for an acknowledgement of a packet if the send buffer is
 full.
	In mod_cgi, the length of time to wait for
 output from a CGI script.
	In mod_ext_filter, the length of time to
 wait for output from a filtering process.
	In mod_proxy, the default timeout value if
 ProxyTimeout is not
 configured.

TraceEnable Directive

	Description:	Determines the behavior on TRACE requests
	Syntax:	TraceEnable [on|off|extended]
	Default:	TraceEnable on
	Context:	server config, virtual host
	Status:	Core
	Module:	core

 This directive overrides the behavior of TRACE for both
 the core server and mod_proxy. The default
 TraceEnable on permits TRACE requests per
 RFC 2616, which disallows any request body to accompany the request.
 TraceEnable off causes the core server and
 mod_proxy to return a 405 (Method not
 allowed) error to the client.

 Finally, for testing and diagnostic purposes only, request
 bodies may be allowed using the non-compliant TraceEnable
 extended directive. The core (as an origin server) will
 restrict the request body to 64k (plus 8k for chunk headers if
 Transfer-Encoding: chunked is used). The core will
 reflect the full headers and all chunk headers with the response
 body. As a proxy server, the request body is not restricted to 64k.

 Note

 Despite claims to the contrary, TRACE is not
 a security vulnerability and there is no viable reason for
 it to be disabled. Doing so necessarily makes your server
 non-compliant.

UnDefine Directive

	Description:	Undefine the existence of a variable
	Syntax:	UnDefine parameter-name
	Context:	server config
	Status:	Core
	Module:	core

 Undoes the effect of a Define or
 of passing a -D argument to httpd.

 This directive can be used to toggle the use of <IfDefine> sections without needing to alter
 -D arguments in any startup scripts.

UseCanonicalName Directive

	Description:	Configures how the server determines its own name and
port
	Syntax:	UseCanonicalName On|Off|DNS
	Default:	UseCanonicalName Off
	Context:	server config, virtual host, directory
	Status:	Core
	Module:	core

 In many situations Apache httpd must construct a self-referential
 URL -- that is, a URL that refers back to the same server. With
 UseCanonicalName On Apache httpd will use the hostname and port
 specified in the ServerName
 directive to construct the canonical name for the server. This name
 is used in all self-referential URLs, and for the values of
 SERVER_NAME and SERVER_PORT in CGIs.

 With UseCanonicalName Off Apache httpd will form
 self-referential URLs using the hostname and port supplied by
 the client if any are supplied (otherwise it will use the
 canonical name, as defined above). These values are the same
 that are used to implement name-based virtual hosts,
 and are available with the same clients. The CGI variables
 SERVER_NAME and SERVER_PORT will be
 constructed from the client supplied values as well.

 An example where this may be useful is on an intranet server
 where you have users connecting to the machine using short
 names such as www. You'll notice that if the users
 type a shortname, and a URL which is a directory, such as
 http://www/splat, without the trailing
 slash then Apache httpd will redirect them to
 http://www.example.com/splat/. If you have
 authentication enabled, this will cause the user to have to
 authenticate twice (once for www and once again
 for www.example.com -- see
 the FAQ on this subject for more information). But if
 UseCanonicalName is set Off, then
 Apache httpd will redirect to http://www/splat/.

 There is a third option, UseCanonicalName DNS,
 which is intended for use with mass IP-based virtual hosting to
 support ancient clients that do not provide a
 Host: header. With this option Apache httpd does a
 reverse DNS lookup on the server IP address that the client
 connected to in order to work out self-referential URLs.

 Warning

 If CGIs make assumptions about the values of SERVER_NAME
 they may be broken by this option. The client is essentially free
 to give whatever value they want as a hostname. But if the CGI is
 only using SERVER_NAME to construct self-referential URLs
 then it should be just fine.

See also

	UseCanonicalPhysicalPort
	ServerName
	Listen

UseCanonicalPhysicalPort Directive

	Description:	Configures how the server determines its own port
	Syntax:	UseCanonicalPhysicalPort On|Off
	Default:	UseCanonicalPhysicalPort Off
	Context:	server config, virtual host, directory
	Status:	Core
	Module:	core

 In many situations Apache httpd must construct a self-referential
 URL -- that is, a URL that refers back to the same server. With
 UseCanonicalPhysicalPort On Apache httpd will, when
 constructing the canonical port for the server to honor
 the UseCanonicalName directive,
 provide the actual physical port number being used by this request
 as a potential port. With UseCanonicalPhysicalPort Off
 Apache httpd will not ever use the actual physical port number, instead
 relying on all configured information to construct a valid port number.

 Note

 The ordering of the lookup when the physical port is used is as
 follows:

 	UseCanonicalName On
	
 	Port provided in Servername
	Physical port
	Default port

	UseCanonicalName Off | DNS
	
 	Parsed port from Host: header
	Physical port
	Port provided in Servername
	Default port

 With UseCanonicalPhysicalPort Off, the
 physical ports are removed from the ordering.

See also

	UseCanonicalName
	ServerName
	Listen

<VirtualHost> Directive

	Description:	Contains directives that apply only to a specific
hostname or IP address
	Syntax:	<VirtualHost
 addr[:port] [addr[:port]]
 ...> ... </VirtualHost>
	Context:	server config
	Status:	Core
	Module:	core

 <VirtualHost> and
 </VirtualHost> are used to enclose a group of
 directives that will apply only to a particular virtual host. Any
 directive that is allowed in a virtual host context may be
 used. When the server receives a request for a document on a
 particular virtual host, it uses the configuration directives
 enclosed in the <VirtualHost>
 section. Addr can be any of the following, optionally followed by
 a colon and a port number (or *):

 	The IP address of the virtual host;
	A fully qualified domain name for the IP address of the
 virtual host (not recommended);
	The character *, which acts as a wildcard and matches
 any IP address.
	The string _default_, which is an alias for *

 <VirtualHost 10.1.2.3:80>
 ServerAdmin webmaster@host.example.com
 DocumentRoot /www/docs/host.example.com
 ServerName host.example.com
 ErrorLog logs/host.example.com-error_log
 TransferLog logs/host.example.com-access_log
</VirtualHost>

 IPv6 addresses must be specified in square brackets because
 the optional port number could not be determined otherwise. An
 IPv6 example is shown below:

 <VirtualHost [2001:db8::a00:20ff:fea7:ccea]:80>
 ServerAdmin webmaster@host.example.com
 DocumentRoot /www/docs/host.example.com
 ServerName host.example.com
 ErrorLog logs/host.example.com-error_log
 TransferLog logs/host.example.com-access_log
</VirtualHost>

 Each Virtual Host must correspond to a different IP address,
 different port number or a different host name for the server,
 in the former case the server machine must be configured to
 accept IP packets for multiple addresses. (If the machine does
 not have multiple network interfaces, then this can be
 accomplished with the ifconfig alias command -- if
 your OS supports it).

 Note

 The use of <VirtualHost> does
 not affect what addresses Apache httpd listens on. You
 may need to ensure that Apache httpd is listening on the correct addresses
 using Listen.

 A ServerName should be
 specified inside each <VirtualHost> block. If it is absent, the
 ServerName from the "main"
 server configuration will be inherited.

 When a request is received, the server first maps it to the best matching
 <VirtualHost> based on the local
 IP address and port combination only. Non-wildcards have a higher
 precedence. If no match based on IP and port occurs at all, the
 "main" server configuration is used.

 If multiple virtual hosts contain the best matching IP address and port,
 the server selects from these virtual hosts the best match based on the
 requested hostname. If no matching name-based virtual host is found,
 then the first listed virtual host that matched the IP address will be
 used. As a consequence, the first listed virtual host for a given IP address
 and port combination is default virtual host for that IP and port
 combination.

 Security

 See the security tips
 document for details on why your security could be compromised if the
 directory where log files are stored is writable by anyone other
 than the user that starts the server.

See also

	Apache HTTP Server Virtual Host documentation
	Issues Regarding DNS and
 Apache HTTP Server
	Setting
 which addresses and ports Apache HTTP Server uses
	How <Directory>, <Location>
 and <Files> sections work for an explanation of how these
 different sections are combined when a request is received

Available Languages: de |
 en |
 es |
 fr |
 ja |
 tr

Comments
Notice:
This is not a Q&A section. Comments placed here should be pointed towards suggestions on improving the documentation or server, and may be removed again by our moderators if they are either implemented or considered invalid/off-topic. Questions on how to manage the Apache HTTP Server should be directed at either our IRC channel, #httpd, on Freenode, or sent to our mailing lists.

Copyright 2014 The Apache Software Foundation.
Licensed under the Apache License, Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap

