
Modules | Directives | FAQ | Glossary | Sitemap

Apache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4
Expressions in Apache HTTP Server

Available Languages: en |
 fr

 Historically, there are several syntax variants for expressions
 used to express a condition in the different modules of the Apache
 HTTP Server. There is some ongoing effort to only use a single
 variant, called ap_expr, for all configuration directives.
 This document describes the ap_expr expression parser.

 The ap_expr expression is intended to replace most other
 expression variants in HTTPD. For example, the deprecated SSLRequire expressions can be replaced
 by Require expr.

	 Grammar in Backus-Naur Form notation
	 Variables
	 Binary operators
	 Unary operators
	 Functions
	 Example expressions
	 Other
	 Comparison with SSLRequire
	 Version History

See also
	<If>
	<ElseIf>
	<Else>
	AuthBasicFake
	AuthFormLoginRequiredLocation
	AuthFormLoginSuccessLocation
	AuthFormLogoutLocation
	RewriteCond
	SetEnvIfExpr
	Header
	RequestHeader
	FilterProvider
	Require expr
	Require ldap-user
	Require ldap-group
	Require ldap-dn
	Require ldap-attribute
	Require ldap-filter
	Require dbd-group
	Require dbm-group
	Require group
	Require host
	SSLRequire
	LogMessage
	mod_include

	Comments

Grammar in Backus-Naur Form notation

 Backus-Naur
 Form (BNF) is a notation technique for context-free grammars,
 often used to describe the syntax of languages used in computing.
 In most cases, expressions are used to express boolean values.
 For these, the starting point in the BNF is expr.
 However, a few directives like LogMessage accept expressions
 that evaluate to a string value. For those, the starting point in
 the BNF is string.

expr ::= "true" | "false"
 | "!" expr
 | expr "&&" expr
 | expr "||" expr
 | "(" expr ")"
 | comp

comp ::= stringcomp
 | integercomp
 | unaryop word
 | word binaryop word
 | word "in" "{" wordlist "}"
 | word "in" listfunction
 | word "=~" regex
 | word "!~" regex

stringcomp ::= word "==" word
 | word "!=" word
 | word "<" word
 | word "<=" word
 | word ">" word
 | word ">=" word

integercomp ::= word "-eq" word | word "eq" word
 | word "-ne" word | word "ne" word
 | word "-lt" word | word "lt" word
 | word "-le" word | word "le" word
 | word "-gt" word | word "gt" word
 | word "-ge" word | word "ge" word

wordlist ::= word
 | wordlist "," word

word ::= word "." word
 | digit
 | "'" string "'"
 | """ string """
 | variable
 | rebackref
 | function

string ::= stringpart
 | string stringpart

stringpart ::= cstring
 | variable
 | rebackref

cstring ::= ...
digit ::= [0-9]+

variable ::= "%{" varname "}"
 | "%{" funcname ":" funcargs "}"

rebackref ::= "$" [0-9]

function ::= funcname "(" word ")"

listfunction ::= listfuncname "(" word ")"

Variables

 The expression parser provides a number of variables of the form
 %{HTTP_HOST}. Note that the value of a variable may depend
 on the phase of the request processing in which it is evaluated. For
 example, an expression used in an <If >
 directive is evaluated before authentication is done. Therefore,
 %{REMOTE_USER} will not be set in this case.

 The following variables provide the values of the named HTTP request
 headers. The values of other headers can be obtained with the
 req function. Using these
 variables may cause the header name to be added to the Vary
 header of the HTTP response, except where otherwise noted for the
 directive accepting the expression. The req_novary
 function may be used to circumvent this
 behavior.

 	Name
	HTTP_ACCEPT
	HTTP_COOKIE
	HTTP_FORWARDED
	HTTP_HOST
	HTTP_PROXY_CONNECTION
	HTTP_REFERER
	HTTP_USER_AGENT

 Other request related variables

 	Name	Description
	REQUEST_METHOD	The HTTP method of the incoming request (e.g.
 GET)
	REQUEST_SCHEME	The scheme part of the request's URI
	REQUEST_URI	The path part of the request's URI
	DOCUMENT_URI	Same as REQUEST_URI
	REQUEST_FILENAME	The full local filesystem path to the file or script matching the
 request, if this has already been determined by the server at the
 time REQUEST_FILENAME is referenced. Otherwise, such
 as when used in virtual host context, the same value as
 REQUEST_URI
	SCRIPT_FILENAME	Same as REQUEST_FILENAME
	LAST_MODIFIED	The date and time of last modification of the file in the format
 20101231235959, if this has already been determined by
 the server at the time LAST_MODIFIED is referenced.

	SCRIPT_USER	The user name of the owner of the script.
	SCRIPT_GROUP	The group name of the group of the script.
	PATH_INFO	The trailing path name information, see
 AcceptPathInfo
	QUERY_STRING	The query string of the current request
	IS_SUBREQ	"true" if the current request is a subrequest,
 "false" otherwise
	THE_REQUEST	The complete request line (e.g.,
 "GET /index.html HTTP/1.1")
	REMOTE_ADDR	The IP address of the remote host
	REMOTE_HOST	The host name of the remote host
	REMOTE_USER	The name of the authenticated user, if any (not available during <If >)
	REMOTE_IDENT	The user name set by mod_ident
	SERVER_NAME	The ServerName of
 the current vhost
	SERVER_PORT	The server port of the current vhost, see
 ServerName
	SERVER_ADMIN	The ServerAdmin of
 the current vhost
	SERVER_PROTOCOL	The protocol used by the request
	DOCUMENT_ROOT	The DocumentRoot of
 the current vhost
	AUTH_TYPE	The configured AuthType (e.g.
 "basic")
	CONTENT_TYPE	The content type of the response (not available during <If >)
	HANDLER	The name of the handler creating
 the response
	HTTPS	"on" if the request uses https,
 "off" otherwise
	IPV6	"on" if the connection uses IPv6,
 "off" otherwise
	REQUEST_STATUS	The HTTP error status of the request (not available during <If >)
	REQUEST_LOG_ID	The error log id of the request (see
 ErrorLogFormat)
	CONN_LOG_ID	The error log id of the connection (see
 ErrorLogFormat)
	CONN_REMOTE_ADDR	The peer IP address of the connection (see the
 mod_remoteip module)
	CONTEXT_PREFIX	
	CONTEXT_DOCUMENT_ROOT	

 Misc variables

 	Name	Description
	TIME_YEAR	The current year (e.g. 2010)
	TIME_MON	The current month (1, ..., 12)
	TIME_DAY	The current day of the month
	TIME_HOUR	The hour part of the current time
 (0, ..., 23)
	TIME_MIN	The minute part of the current time
	TIME_SEC	The second part of the current time
	TIME_WDAY	The day of the week (starting with 0
 for Sunday)
	TIME	The date and time in the format
 20101231235959
	SERVER_SOFTWARE	The server version string
	API_VERSION	The date of the API version (module magic number)

 Some modules register additional variables, see e.g.
 mod_ssl.

Binary operators

 With the exception of some built-in comparison operators, binary
 operators have the form "-[a-zA-Z][a-zA-Z0-9_]+", i.e. a
 minus and at least two characters. The name is not case sensitive.
 Modules may register additional binary operators.

 Comparison operators

 	Name	Alternative	Description
	==	=	String equality
	!=		String inequality
	<		String less than
	<=		String less than or equal
	>		String greater than
	>=		String greater than or equal
	-eq	eq	Integer equality
	-ne	ne	Integer inequality
	-lt	lt	Integer less than
	-le	le	Integer less than or equal
	-gt	gt	Integer greater than
	-ge	ge	Integer greater than or equal

 Other binary operators

 	Name	Description
	-ipmatch	IP address matches address/netmask
	-strmatch	left string matches pattern given by right string (containing
 wildcards *, ?, [])
	-strcmatch	same as -strmatch, but case insensitive
	-fnmatch	same as -strmatch, but slashes are not matched by
 wildcards

Unary operators

 Unary operators take one argument and have the form
 "-[a-zA-Z]", i.e. a minus and one character.
 The name is case sensitive.
 Modules may register additional unary operators.

 	Name	Description	Restricted
	-d	The argument is treated as a filename.
 True if the file exists and is a directory	yes
	-e	The argument is treated as a filename.
 True if the file (or dir or special) exists	yes
	-f	The argument is treated as a filename.
 True if the file exists and is regular file	yes
	-s	The argument is treated as a filename.
 True if the file exists and is not empty	yes
	-L	The argument is treated as a filename.
 True if the file exists and is symlink	yes
	-h	The argument is treated as a filename.
 True if the file exists and is symlink
 (same as -L)	yes
	-F	True if string is a valid file, accessible via all the server's
 currently-configured access controls for that path. This uses an
 internal subrequest to do the check, so use it with care - it can
 impact your server's performance!	
	-U	True if string is a valid URL, accessible via all the server's
 currently-configured access controls for that path. This uses an
 internal subrequest to do the check, so use it with care - it can
 impact your server's performance!	
	-A	Alias for -U	
	-n	True if string is not empty	
	-z	True if string is empty	
	-T	False if string is empty, "0", "off",
 "false", or "no" (case insensitive).
 True otherwise.	
	-R	Same as "%{REMOTE_ADDR} -ipmatch ...", but more
 efficient
 	

 The operators marked as "restricted" are not available in some modules
 like mod_include.

Functions

 Normal string-valued functions take one string as argument and return
 a string. Functions names are not case sensitive.
 Modules may register additional functions.

 	Name	Description	Restricted
	req, http	Get HTTP request header; header names may be added to the Vary
 header, see below	
	req_novary	Same as req, but header names will not be added to the
 Vary header	
	resp	Get HTTP response header	
	reqenv	Lookup request environment variable (as a shortcut,
 v can be used too to access
 variables).	
	osenv	Lookup operating system environment variable	
	note	Lookup request note	
	env	Return first match of note, reqenv,
 osenv	
	tolower	Convert string to lower case	
	toupper	Convert string to upper case	
	escape	Escape special characters in %hex encoding	
	unescape	Unescape %hex encoded string, leaving encoded slashes alone;
 return empty string if %00 is found	
	base64	Encode the string using base64 encoding	
	unbase64	Decode base64 encoded string, return truncated string if 0x00 is
 found	
	md5	Hash the string using MD5, then encode the hash with hexadecimal
 encoding	
	sha1	Hash the string using SHA1, then encode the hash with hexadecimal
 encoding	
	file	Read contents from a file	yes
	filesize	Return size of a file (or 0 if file does not exist or is not
 regular file)	yes

 The functions marked as "restricted" are not available in some modules
 like mod_include.

 When the functions req or http are used,
 the header name will automatically be added to the Vary header of the
 HTTP response, except where otherwise noted for the directive accepting
 the expression. The req_novary function can be used to
 prevent names from being added to the Vary header.

 In addition to string-valued functions, there are also
 list-valued functions which take one string as argument and return a
 wordlist, i.e. a list of strings. The wordlist can be used with the
 special -in operator. Functions names are not case
 sensitive. Modules may register additional functions.

 There are no built-in list-valued functions. mod_ssl
 provides PeerExtList. See the description of
 SSLRequire for details
 (but PeerExtList is also usable outside
 of SSLRequire).

Example expressions

	
 The following examples show how expressions might be used to
 evaluate requests:

	
	# Compare the host name to example.com and redirect to www.example.com if it matches
<If "%{HTTP_HOST} == 'example.com'">
 Redirect permanent / http://www.example.com/
</If>

Force text/plain if requesting a file with the query string contains 'forcetext'
<If "%{QUERY_STRING} =~ /forcetext/">
 ForceType text/plain
</If>

Only allow access to this content during business hours
<Directory "/foo/bar/business">
 Require expr %{TIME_HOUR} -gt 9 && %{TIME_HOUR} -lt 17
</Directory>

Other

 	Name	Alternative	Description
	-in	in	string contained in string list
	/regexp/	m#regexp#	Regular expression (the second form allows different
 delimiters than /)
	/regexp/i	m#regexp#i	Case insensitive regular expression
	$0 ... $9		Regular expression backreferences

 Regular expression backreferences

 The strings $0 ... $9 allow to reference
 the capture groups from a previously executed, successfully
 matching regular expressions. They can normally only be used in the
 same expression as the matching regex, but some modules allow special
 uses.

Comparison with SSLRequire

 The ap_expr syntax is mostly a superset of the syntax of the
 deprecated SSLRequire directive.
 The differences are described in SSLRequire's documentation.

Version History

 The req_novary function
 is available for versions 2.4.4 and later.

Available Languages: en |
 fr

Comments
Notice:
This is not a Q&A section. Comments placed here should be pointed towards suggestions on improving the documentation or server, and may be removed again by our moderators if they are either implemented or considered invalid/off-topic. Questions on how to manage the Apache HTTP Server should be directed at either our IRC channel, #httpd, on Freenode, or sent to our mailing lists.

Copyright 2014 The Apache Software Foundation.
Licensed under the Apache License, Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap

